MADNESS 0.10.1
mraimpl.h
Go to the documentation of this file.
1/*
2 This file is part of MADNESS.
3
4 Copyright (C) 2007,2010 Oak Ridge National Laboratory
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
20 For more information please contact:
21
22 Robert J. Harrison
23 Oak Ridge National Laboratory
24 One Bethel Valley Road
25 P.O. Box 2008, MS-6367
26
27 email: harrisonrj@ornl.gov
28 tel: 865-241-3937
29 fax: 865-572-0680
30*/
31
32#ifndef MADNESS_MRA_MRAIMPL_H__INCLUDED
33#define MADNESS_MRA_MRAIMPL_H__INCLUDED
34
35#ifndef MPRAIMPLX
36#error "mraimpl.h should ONLY be included in one of the mraX.cc files (x=1..6)"
37#endif
38
39#include <memory>
40#include <math.h>
41#include <cmath>
46
49
50namespace std {
51 template <typename T>
52 bool isnan(const std::complex<T>& v) {
53 return ::std::isnan(v.real()) || ::std::isnan(v.imag());
54 }
55}
56
57/// \file mra/mraimpl.h
58/// \brief Declaration and initialization of static data, some implementation, some instantiation
59
60namespace madness {
61 // Definition and initialization of FunctionDefaults static members
62 // It cannot be an instance of FunctionFactory since we want to
63 // set the defaults independent of the data type.
64
65 template <typename T, std::size_t NDIM>
67 if (! two_scale_hg(k, &hg)) throw "failed to get twoscale coefficients";
68 hgT = copy(transpose(hg));
69
70 Slice sk(0,k-1), sk2(k,-1);
71 hgsonly = copy(hg(Slice(0,k-1),_));
72
73 h0 = copy(hg(sk,sk));
74 h1 = copy(hg(sk,sk2));
75 g0 = copy(hg(sk2,sk));
76 g1 = copy(hg(sk2,sk2));
77
78 h0T = copy(transpose(hg(sk,sk)));
79 h1T = copy(transpose(hg(sk,sk2)));
80 g0T = copy(transpose(hg(sk2,sk)));
81 g1T = copy(transpose(hg(sk2,sk2)));
82
83 }
84
85 template <typename T, std::size_t NDIM>
87 (int k, int npt, Tensor<double>& quad_x, Tensor<double>& quad_w,
88 Tensor<double>& quad_phi, Tensor<double>& quad_phiw, Tensor<double>& quad_phit) {
89 quad_x = Tensor<double>(npt); // point
90 quad_w = Tensor<double>(npt); // wheight
91 quad_phi = Tensor<double>(npt,k);
92 quad_phiw = Tensor<double>(npt,k);
93
94 gauss_legendre(npt,0.0,1.0,quad_x.ptr(),quad_w.ptr());
95 for (int mu=0; mu<npt; ++mu) {
96 double phi[200];
97 legendre_scaling_functions(quad_x(mu),k,phi);
98 for (int j=0; j<k; ++j) {
99 quad_phi(mu,j) = phi[j];
100 quad_phiw(mu,j) = quad_w(mu)*phi[j];
101 }
102 }
103 quad_phit = transpose(quad_phi);
104 }
105
106 template <typename T, std::size_t NDIM>
109 world.gop.fence(); // Make sure nothing is going on
110 MADNESS_CHECK_THROW(verify_tree_state_local(),"inconsistent coefficients in tree node");
111 MADNESS_CHECK_THROW(verify_parents_and_children(),"missing parents or children");
112 }
113
114 template <typename T, std::size_t NDIM>
116
117 // Ensure that parents and children exist appropriately
118 for (const auto& [key, node] : coeffs) {
119
120 if (key.level() > 0) {
121 const keyT parent = key.parent();
122 typename dcT::const_iterator pit = coeffs.find(parent).get();
123 if (pit == coeffs.end()) {
124 print(world.rank(), "FunctionImpl: verify: MISSING PARENT",key,parent);
125 std::cout.flush();
126 return false;
127 MADNESS_EXCEPTION("FunctionImpl: verify: MISSING PARENT", 0);
128 }
129 const nodeT& pnode = pit->second;
130 if (!pnode.has_children()) {
131 print(world.rank(), "FunctionImpl: verify: PARENT THINKS IT HAS NO CHILDREN",key,parent);
132 return false;
133 std::cout.flush();
134 MADNESS_EXCEPTION("FunctionImpl: verify: PARENT THINKS IT HAS NO CHILDREN", 0);
135 }
136 }
137
138 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
139 typename dcT::const_iterator cit = coeffs.find(kit.key()).get();
140 if (cit == coeffs.end()) {
141 if (node.has_children()) {
142 print(world.rank(), "FunctionImpl: verify: MISSING CHILD",key,kit.key());
143 return false;
144 std::cout.flush();
145 MADNESS_EXCEPTION("FunctionImpl: verify: MISSING CHILD", 0);
146 }
147 }
148 else {
149 if (! node.has_children()) {
150 print(world.rank(), "FunctionImpl: verify: UNEXPECTED CHILD",key,kit.key());
151 return false;
152 std::cout.flush();
153 MADNESS_EXCEPTION("FunctionImpl: verify: UNEXPECTED CHILD", 0);
154 }
155 }
156 }
157 world.gop.fence();
158 }
159 return true;
160 }
161
162
163
164 template<typename T, std::size_t NDIM>
166
167 const TreeState state=get_tree_state();
168 const int k=get_k();
169
170 auto check_internal_coeff_size = [&state, &k](const coeffT& c) {
171 if (state==compressed or state==nonstandard or state==nonstandard_with_leaves)
172 return c.dim(0)==2*k;
173 if (state==redundant) return c.dim(0)==k;
174 if (state==reconstructed) return (not c.is_assigned()); // must not be assigned at all
175 if (state==redundant_after_merge or state==nonstandard_after_apply) return true;
176 MADNESS_EXCEPTION("unknown state",1);
177 };
178 auto check_leaf_coeff_size = [&state, &k](const coeffT& c) {
179 // citation from compress_spawn
180 // if (not keepleaves) node.clear_coeff();
181 if (state==reconstructed or state==redundant or state==redundant_after_merge or state==nonstandard_with_leaves)
182 return c.dim(0)==k;
183 if (state==compressed or state==nonstandard) return (not c.is_assigned()); // must not be assigned at all
184 if (state==nonstandard_after_apply) return true;
185 MADNESS_EXCEPTION("unknown state",1);
186 };
187
188 bool good=true;
189 for (const auto& [key, node] : coeffs) {
190 const auto& c=node.coeff();
191 const bool is_internal=node.has_children();
192 const bool is_leaf=not node.has_children();
193 if (is_internal) good=good and check_internal_coeff_size(c);
194 if (is_leaf) good=good and check_leaf_coeff_size(c);
195 if (not good) {
196 print("incorrect size of coefficients for key",key,"state",state,c.dim(0));;
197 }
198 }
199 return good;
200 }
201
202 template <typename T, std::size_t NDIM>
203 const std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >& FunctionImpl<T,NDIM>::get_pmap() const {
204 return coeffs.get_pmap();
205 }
206
207
208 /// perform: this= alpha*f + beta*g, invoked by result
209
210 /// f and g are reconstructed, so we can save on the compress operation,
211 /// walk down the joint tree, and add leaf coefficients; effectively refines
212 /// to common finest level.
213 /// @param[in] alpha prefactor for f
214 /// @param[in] f first addend
215 /// @param[in] beta prefactor for g
216 /// @param[in] g second addend
217 /// @return nothing, but leaves this's tree reconstructed and as sum of f and g
218 template <typename T, std::size_t NDIM>
220 const double beta, const implT& g, const bool fence) {
221
222 MADNESS_CHECK_THROW(f.is_reconstructed(), "gaxpy_oop_reconstructed: f is not reconstructed");
223 MADNESS_CHECK_THROW(g.is_reconstructed(), "gaxpy_oop_reconstructed: g is not reconstructed");
224
225 ProcessID owner = coeffs.owner(cdata.key0);
226 if (world.rank() == owner) {
227
230
231 typedef add_op coeff_opT;
232 coeff_opT coeff_op(ff,gg,alpha,beta);
233 typedef insert_op<T,NDIM> apply_opT;
234 apply_opT apply_op(this);
235
236 woT::task(world.rank(), &implT:: template forward_traverse<coeff_opT,apply_opT>,
237 coeff_op, apply_op, cdata.key0);
238
239 }
240 set_tree_state(reconstructed);
241 if (fence) world.gop.fence();
242 }
243
244 /// Returns true if the function is compressed.
245 template <typename T, std::size_t NDIM>
247 return (tree_state==compressed);
248 }
249
250 /// Returns true if the function is reconstructed.
251 template <typename T, std::size_t NDIM>
253 return (tree_state==reconstructed);
254 }
255
256 /// Returns true if the function is redundant.
257 template <typename T, std::size_t NDIM>
259 return (tree_state==redundant);
260 }
261
262 /// Returns true if the function is redundant_after_merge.
263 template <typename T, std::size_t NDIM>
265 return (tree_state==redundant_after_merge);
266 }
267
268 template <typename T, std::size_t NDIM>
270 return (tree_state==nonstandard);
271 }
272
273 template <typename T, std::size_t NDIM>
275 return (tree_state==nonstandard_with_leaves);
276 }
277
278 template <typename T, std::size_t NDIM>
280 return tree_state==on_demand;
281 }
282
283 template <typename T, std::size_t NDIM>
285 return (tree_state==nonstandard_with_leaves);
286 }
287
288 template <typename T, std::size_t NDIM>
290 set_tree_state(on_demand);
291// this->on_demand=true;
292 functor=functor1;
293 }
294
295 template <typename T, std::size_t NDIM>
296 std::shared_ptr<FunctionFunctorInterface<T,NDIM> > FunctionImpl<T,NDIM>::get_functor() {
297 MADNESS_ASSERT(this->functor);
298 return functor;
299 }
300
301 template <typename T, std::size_t NDIM>
302 std::shared_ptr<FunctionFunctorInterface<T,NDIM> > FunctionImpl<T,NDIM>::get_functor() const {
303 MADNESS_ASSERT(this->functor);
304 return functor;
305 }
306
307 template <typename T, std::size_t NDIM>
309// this->on_demand=false;
310 set_tree_state(unknown);
311 functor.reset();
312 }
313
314 template <typename T, std::size_t NDIM>
316
317 template <typename T, std::size_t NDIM>
319
320 template <typename T, std::size_t NDIM>
322
323 template <typename T, std::size_t NDIM>
325
326 template <typename T, std::size_t NDIM>
327 void FunctionImpl<T,NDIM>::set_thresh(double value) {thresh = value;}
328
329 template <typename T, std::size_t NDIM>
330 bool FunctionImpl<T,NDIM>::get_autorefine() const {return autorefine;}
331
332 template <typename T, std::size_t NDIM>
333 void FunctionImpl<T,NDIM>::set_autorefine(bool value) {autorefine = value;}
334
335 template <typename T, std::size_t NDIM>
336 int FunctionImpl<T,NDIM>::get_k() const {return k;}
337
338 template <typename T, std::size_t NDIM>
339 const typename FunctionImpl<T,NDIM>::dcT& FunctionImpl<T,NDIM>::get_coeffs() const {return coeffs;}
340
341 template <typename T, std::size_t NDIM>
343
344 template <typename T, std::size_t NDIM>
346
347 template <typename T, std::size_t NDIM>
348 void FunctionImpl<T,NDIM>::accumulate_timer(const double time) const {
349 timer_accumulate.accumulate(time);
350 }
351
352 template <typename T, std::size_t NDIM>
354 if (world.rank()==0) {
355 timer_accumulate.print("accumulate");
356 timer_target_driven.print("target_driven");
357 timer_lr_result.print("result2low_rank");
358 }
359 }
360
361 template <typename T, std::size_t NDIM>
363 if (world.rank()==0) {
364 timer_accumulate.reset();
365 timer_target_driven.reset();
366 timer_lr_result.reset();
367 }
368 }
369
370 /// Truncate according to the threshold with optional global fence
371
372 /// If thresh<=0 the default value of this->thresh is used
373 template <typename T, std::size_t NDIM>
374 void FunctionImpl<T,NDIM>::truncate(double tol, bool fence) {
375 // Cannot put tol into object since it would make a race condition
376 if (tol <= 0.0)
377 tol = thresh;
378 if (world.rank() == coeffs.owner(cdata.key0)) {
379 if (is_compressed()) {
380 truncate_spawn(cdata.key0,tol);
381 } else {
382 truncate_reconstructed_spawn(cdata.key0,tol);
383 }
384 }
385 if (fence)
386 world.gop.fence();
387 }
388
389 template <typename T, std::size_t NDIM>
391 return cdata.key0;
392 }
393
394 /// Print a plane ("xy", "xz", or "yz") containing the point x to file
395
396 /// works for all dimensions; we walk through the tree, and if a leaf node
397 /// inside the sub-cell touches the plane we print it in pstricks format
398 template <typename T, std::size_t NDIM>
399 void FunctionImpl<T,NDIM>::print_plane(const std::string filename, const int xaxis, const int yaxis, const coordT& el2) {
400
401 // get the local information
402 Tensor<double> localinfo=print_plane_local(xaxis,yaxis,el2);
403
404 // lump all the local information together, and gather on node0
405 std::vector<Tensor<double> > localinfo_vec(1,localinfo);
406 std::vector<Tensor<double> > printinfo=world.gop.concat0(localinfo_vec);
407 world.gop.fence();
408
409 // do the actual print
410 if (world.rank()==0) do_print_plane(filename,printinfo,xaxis,yaxis,el2);
411 }
412
413 /// collect the data for a plot of the MRA structure locally on each node
414
415 /// @param[in] xaxis the x-axis in the plot (can be any axis of the MRA box)
416 /// @param[in] yaxis the y-axis in the plot (can be any axis of the MRA box)
417 /// @param[in] el2
418 template <typename T, std::size_t NDIM>
419 Tensor<double> FunctionImpl<T,NDIM>::print_plane_local(const int xaxis, const int yaxis, const coordT& el2) {
420 coordT x_sim;
421 user_to_sim<NDIM>(el2,x_sim);
422 x_sim[0]+=1.e-10;
423
424 // dimensions are: (# boxes)(hue, x lo left, y lo left, x hi right, y hi right)
425 Tensor<double> plotinfo(coeffs.size(),5);
426 long counter=0;
427
428 // loop over local boxes, if the fit, add the info to the output tensor
429 typename dcT::const_iterator end = coeffs.end();
430 for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
431 const keyT& key = it->first;
432 const nodeT& node = it->second;
433
434 // thisKeyContains ignores dim0 and dim1
435 if (key.thisKeyContains(x_sim,xaxis,yaxis) and node.is_leaf() and (node.has_coeff())) {
436
437 Level n=key.level();
439 // get the diametral edges of the node in the plotting plane
440 double scale=std::pow(0.5,double(n));
441 double xloleft = scale*l[xaxis];
442 double yloleft = scale*l[yaxis];
443 double xhiright = scale*(l[xaxis]+1);
444 double yhiright = scale*(l[yaxis]+1);
445
446 // convert back to user coordinates
447 Vector<double,4> user;
452
453
454 // if ((xloleft<-5.0) or (yloleft<-5.0) or (xhiright>5.0) or (yhiright>5.0)) continue;
455 if ((user[0]<-5.0) or (user[1]<-5.0) or (user[2]>5.0) or (user[3]>5.0)) continue;
456
457 // do rank or do error
458 double color=0.0;
459 if (1) {
460
461 const double maxrank=40;
462 do_convert_to_color hue(maxrank,false);
463 color=hue(node.coeff().rank());
464 } else {
465
466 // Make quadrature rule of higher order
467 const int npt = cdata.npt + 1;
468 Tensor<double> qx, qw, quad_phi, quad_phiw, quad_phit;
469 FunctionCommonData<T,NDIM>::_init_quadrature(k+1, npt, qx, qw, quad_phi, quad_phiw, quad_phit);
470 do_err_box< FunctionFunctorInterface<T,NDIM> > op(this, this->get_functor().get(), npt, qx, quad_phit, quad_phiw);
471
472 do_convert_to_color hue(1000.0,true);
473 double error=op(it);
474 error=sqrt(error);//*pow(2,key.level()*6);
475 color=hue(error);
476 }
477
478 plotinfo(counter,0)=color;
479 plotinfo(counter,1)=user[0];
480 plotinfo(counter,2)=user[1];
481 plotinfo(counter,3)=user[2];
482 plotinfo(counter,4)=user[3];
483 ++counter;
484 }
485 }
486
487 // shrink the info
488 if (counter==0) plotinfo=Tensor<double>();
489 else plotinfo=plotinfo(Slice(0,counter-1),Slice(_));
490 return plotinfo;
491 }
492
493 /// print the MRA structure
494 template <typename T, std::size_t NDIM>
495 void FunctionImpl<T,NDIM>::do_print_plane(const std::string filename, std::vector<Tensor<double> > plotinfo,
496 const int xaxis, const int yaxis, const coordT el2) {
497
498 // invoke only on master node
499 MADNESS_ASSERT(world.rank()==0);
500
501 // prepare file
502 FILE * pFile;
503 pFile = fopen(filename.c_str(), "w");
505
506
507 fprintf(pFile,"\\psset{unit=1cm}\n");
508 fprintf(pFile,"\\begin{pspicture}(%4.2f,%4.2f)(%4.2f,%4.2f)\n",
509 // cell(xaxis,0),cell(xaxis,1),cell(yaxis,0),cell(yaxis,1));
510 -5.0,-5.0,5.0,5.0);
511 fprintf(pFile,"\\pslinewidth=0.1pt\n");
512
513 for (std::vector<Tensor<double> >::const_iterator it=plotinfo.begin(); it!=plotinfo.end(); ++it) {
514
515 Tensor<double> localinfo=*it;
516 if (localinfo.has_data()) {
517
518 for (long i=0; i<localinfo.dim(0); ++i) {
519
520 fprintf(pFile,"\\newhsbcolor{mycolor}{%8.4f 1.0 0.7}\n",localinfo(i,0));
521 fprintf(pFile,"\\psframe["//linewidth=0.5pt,"
522 "fillstyle=solid,"
523 "fillcolor=mycolor]"
524 "(%12.8f,%12.8f)(%12.8f,%12.8f)\n",
525 localinfo(i,1),localinfo(i,2),localinfo(i,3),localinfo(i,4));
526 }
527 }
528 }
529
530
531 fprintf(pFile,"\\end{pspicture}\n");
532 fclose(pFile);
533 }
534
535 /// print the grid (the roots of the quadrature of each leaf box)
536 /// of this function in user xyz coordinates
537 template <typename T, std::size_t NDIM>
538 void FunctionImpl<T,NDIM>::print_grid(const std::string filename) const {
539
540 // get the local information
541 std::vector<keyT> local_keys=local_leaf_keys();
542
543 // lump all the local information together, and gather on node0
544 std::vector<keyT> all_keys=world.gop.concat0(local_keys);
545 world.gop.fence();
546
547 // do the actual print
548 if (world.rank()==0) do_print_grid(filename,all_keys);
549
550 }
551
552 /// return the keys of the local leaf boxes
553 template <typename T, std::size_t NDIM>
554 std::vector<typename FunctionImpl<T,NDIM>::keyT> FunctionImpl<T,NDIM>::local_leaf_keys() const {
555
556 // coeffs.size is maximum number of keys (includes internal keys)
557 std::vector<keyT> keys(coeffs.size());
558
559 // loop over local boxes, if they are leaf boxes add their quadrature roots
560 // to the output tensor
561 int i=0;
562 typename dcT::const_iterator end = coeffs.end();
563 for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
564 const keyT& key = it->first;
565 const nodeT& node = it->second;
566 if (node.is_leaf()) keys[i++]=key;
567 }
568
569 // shrink the vector to number of leaf keys
570 keys.resize(i);
571 return keys;
572 }
573
574 /// print the grid in xyz format
575
576 /// the quadrature points and the key information will be written to file,
577 /// @param[in] filename where the quadrature points will be written to
578 /// @param[in] keys all leaf keys
579 template <typename T, std::size_t NDIM>
580 void FunctionImpl<T,NDIM>::do_print_grid(const std::string filename, const std::vector<keyT>& keys) const {
581 // invoke only on master node
582 MADNESS_ASSERT(world.rank()==0);
583
584 // the quadrature points in simulation coordinates of the root node
585 const Tensor<double> qx=cdata.quad_x;
586 const size_t npt = qx.dim(0);
587
588 // the number of coordinates (grid point tuples) per box ({x1},{x2},{x3},..,{xNDIM})
589 long npoints=power<NDIM>(npt);
590 // the number of boxes
591 long nboxes=keys.size();
592
593 // prepare file
594 FILE * pFile;
595 pFile = fopen(filename.c_str(), "w");
596
597 fprintf(pFile,"%ld\n",npoints*nboxes);
598 fprintf(pFile,"%ld points per box and %ld boxes \n",npoints,nboxes);
599
600 // loop over all leaf boxes
601 typename std::vector<keyT>::const_iterator key_it=keys.begin();
602 for (key_it=keys.begin(); key_it!=keys.end(); ++key_it) {
603
604 const keyT& key=*key_it;
605 fprintf(pFile,"# key: %8d",key.level());
606 for (size_t d=0; d<NDIM; d++) fprintf(pFile,"%8d",int(key.translation()[d]));
607 fprintf(pFile,"\n");
608
609 // this is borrowed from fcube
610 const Vector<Translation,NDIM>& l = key.translation();
611 const Level n = key.level();
612 const double h = std::pow(0.5,double(n));
613 coordT c; // will hold the point in user coordinates
614
617
618 if (NDIM == 3) {
619 for (size_t i=0; i<npt; ++i) {
620 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
621 for (size_t j=0; j<npt; ++j) {
622 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
623 for (size_t k=0; k<npt; ++k) {
624 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
625 // grid weights
626 // double scale = pow(0.5,0.5*NDIM*key.level())*
627 // sqrt(FunctionDefaults<NDIM>::get_cell_volume());
628 // double w=cdata.quad_phiw[i]*cdata.quad_phiw[j]*cdata.quad_phiw[k];
629
630 fprintf(pFile,"%18.12f %18.12f %18.12f\n",c[0],c[1],c[2]);
631 // fprintf(pFile,"%18.12e %18.12e %18.12e %18.12e\n",c[0],c[1],c[2],w*scale);
632 }
633 }
634 }
635 } else {
636 MADNESS_EXCEPTION("only NDIM=3 in print_grid",0);
637 }
638 }
639 fclose(pFile);
640 }
641
642
643 /// Returns the truncation threshold according to truncate_method
644 template <typename T, std::size_t NDIM>
645 double FunctionImpl<T,NDIM>::truncate_tol(double tol, const keyT& key) const {
646
647 // RJH ... introduced max level here to avoid runaway
648 // refinement due to truncation threshold going down to
649 // intrinsic numerical error
650 const int MAXLEVEL1 = 20; // 0.5**20 ~= 1e-6
651 const int MAXLEVEL2 = 10; // 0.25**10 ~= 1e-6
652
653 if (truncate_mode == 0) {
654 return tol;
655 }
656 else if (truncate_mode == 1) {
658 return tol*std::min(1.0,pow(0.5,double(std::min(key.level(),MAXLEVEL1)))*L);
659 }
660 else if (truncate_mode == 2) {
662 return tol*std::min(1.0,pow(0.25,double(std::min(key.level(),MAXLEVEL2)))*L*L);
663 }
664 else if (truncate_mode == 3) {
665 // similar to truncate mode 1, but with an additional factor to
666 // account for an increased number of boxes in higher dimensions
667
668 // here is our handwaving argument: this threshold will give each
669 // FunctionNode an error of less than tol. The total error can
670 // then be as high as sqrt(#nodes) * tol. Therefore in order to
671 // account for higher dimensions: divide tol by about the root of
672 // number of siblings (2^NDIM) that have a large error when we
673 // refine along a deep branch of the tree. FAB
674 //
675 // Nope ... it can easily be as high as #nodes * tol. The real
676 // fix for this is an end-to-end error analysis of the larger
677 // application and if desired to include this factor into the
678 // threshold selected by the application. RJH
679 const static double fac=1.0/std::pow(2,NDIM*0.5);
680 tol*=fac;
681
683 return tol*std::min(1.0,pow(0.5,double(std::min(key.level(),MAXLEVEL1)))*L);
684
685 } else {
686 MADNESS_EXCEPTION("truncate_mode invalid",truncate_mode);
687 }
688 }
689
690 /// Returns patch referring to coeffs of child in parent box
691 template <typename T, std::size_t NDIM>
692 std::vector<Slice> FunctionImpl<T,NDIM>::child_patch(const keyT& child) const {
693 std::vector<Slice> s(NDIM);
694 const Vector<Translation,NDIM>& l = child.translation();
695 for (std::size_t i=0; i<NDIM; ++i)
696 s[i] = cdata.s[l[i]&1]; // Lowest bit of translation
697 return s;
698 }
699
700 /// Directly project parent NS coeffs to child NS coeffs
701
702 template <typename T, std::size_t NDIM>
704 const keyT& child, const keyT& parent, const coeffT& coeff) const {
705
706 const implT* f=this;
707 // MADNESS_ASSERT(coeff.tensor_type()==TT_FULL);
708 coeffT result(f->cdata.v2k,coeff.tensor_type());
709
710 // if the node for child is existent in f, and it is an internal node, we
711 // automatically have the NS form; if it is a leaf node, we only have the
712 // sum coeffs, so we take zero difference coeffs
713 if (child==parent) {
714 if (coeff.dim(0)==2*f->get_k()) result=coeff; // internal node
715 else if (coeff.dim(0)==f->get_k()) { // leaf node
716 result(f->cdata.s0)+=coeff;
717 } else {
718 MADNESS_EXCEPTION("confused k in parent_to_child_NS",1);
719 }
720 } else if (child.level()>parent.level()) {
721
722 // parent and coeff should refer to a leaf node with sum coeffs only
723 // b/c tree should be compressed with leaves kept.
724 MADNESS_ASSERT(coeff.dim(0)==f->get_k());
725 const coeffT scoeff=f->parent_to_child(coeff,parent,child);
726 result(f->cdata.s0)+=scoeff;
727 } else {
728 MADNESS_EXCEPTION("confused keys in parent_to_child_NS",1);
729 }
730 return result;
731 }
732
733 /// truncate tree at a certain level
734 template <typename T, std::size_t NDIM>
735 void FunctionImpl<T,NDIM>::erase(const Level& max_level) {
736 this->make_redundant(true);
737
738 typename dcT::iterator end = coeffs.end();
739 for (typename dcT::iterator it= coeffs.begin(); it!=end; ++it) {
740 keyT key=it->first;
741 nodeT& node=it->second;
742 if (key.level()>max_level) coeffs.erase(key);
743 if (key.level()==max_level) node.set_has_children(false);
744 }
745 this->undo_redundant(true);
746 }
747
748
749 /// Returns some asymmetry measure ... no comms
750 template <typename T, std::size_t NDIM>
754 return world.taskq.reduce<double,rangeT,do_check_symmetry_local>(rangeT(coeffs.begin(),coeffs.end()),
756 }
757
758
759 /// Refine multiple functions down to the same finest level
760
761 /// @param[v] is the vector of functions we are refining.
762 /// @param[key] is the current node.
763 /// @param[c] is the vector of coefficients passed from above.
764 template <typename T, std::size_t NDIM>
766 const std::vector<tensorT>& c,
767 const keyT key) {
768 if (key == cdata.key0 && coeffs.owner(key)!=world.rank()) return;
769
770 // First insert coefficients from above ... also get write accessors here
771 std::unique_ptr<typename dcT::accessor[]> acc(new typename dcT::accessor[v.size()]);
772 for (unsigned int i=0; i<c.size(); i++) {
773 MADNESS_ASSERT(v[i]->coeffs.get_pmap() == coeffs.get_pmap());
774 MADNESS_ASSERT(v[i]->coeffs.owner(key) == world.rank());
775 bool exists = ! v[i]->coeffs.insert(acc[i],key);
776 if (c[i].size()) {
777 MADNESS_CHECK(!exists);
778 acc[i]->second = nodeT(coeffT(c[i],targs),false);
779 }
780 else {
781 MADNESS_ASSERT(exists);
782 }
783 }
784
785 // If everyone has coefficients we are done
786 bool done = true;
787 for (unsigned int i=0; i<v.size(); i++) {
788 done &= acc[i]->second.has_coeff();
789 }
790
791 if (!done) {
792 // Those functions with coefficients need to be refined down
793 std::vector<tensorT> d(v.size());
794 for (unsigned int i=0; i<v.size(); i++) {
795 if (acc[i]->second.has_coeff()) {
796 tensorT s(cdata.v2k);
797 // s(cdata.s0) = acc[i]->second.coeff()(___);
798 s(cdata.s0) = acc[i]->second.coeff().full_tensor_copy();
799 acc[i]->second.clear_coeff();
800 d[i] = unfilter(s);
801 acc[i]->second.set_has_children(true);
802 }
803 }
804
805 // Loop thru children and pass down
806 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
807 const keyT& child = kit.key();
808 std::vector<Slice> cp = child_patch(child);
809 std::vector<tensorT> childc(v.size());
810 for (unsigned int i=0; i<v.size(); i++) {
811 if (d[i].size()) childc[i] = copy(d[i](cp));
812 }
813 woT::task(coeffs.owner(child), &implT::refine_to_common_level, v, childc, child);
814 }
815 }
816 }
817
818 // horrifically non-scalable
819 template <typename T, std::size_t NDIM>
820 void FunctionImpl<T,NDIM>::put_in_box(ProcessID from, long nl, long ni) const {
821 if (world.size()> 1000)
822 throw "NO!";
823 box_leaf[from] = nl;
824 box_interior[from] = ni;
825 }
826
827 /// Prints summary of data distribution
828 template <typename T, std::size_t NDIM>
830 if (world.size() >= 1000)
831 return;
832 for (int i=0; i<world.size(); ++i)
833 box_leaf[i] = box_interior[i] == 0;
834 world.gop.fence();
835 long nleaf=0, ninterior=0;
836 typename dcT::const_iterator end = coeffs.end();
837 for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
838 const nodeT& node = it->second;
839 if (node.is_leaf())
840 ++nleaf;
841 else
842 ++ninterior;
843 }
844 this->send(0, &implT::put_in_box, world.rank(), nleaf, ninterior);
845 world.gop.fence();
846 if (world.rank() == 0) {
847 for (int i=0; i<world.size(); ++i) {
848 printf("load: %5d %8ld %8ld\n", i, box_leaf[i], box_interior[i]);
849 }
850 }
851 world.gop.fence();
852 }
853
854 template <typename T, std::size_t NDIM>
855 bool FunctionImpl<T,NDIM>::noautorefine(const keyT& key, const tensorT& t) const {
856 return false;
857 }
858
859 /// Returns true if this block of coeffs needs autorefining
860 template <typename T, std::size_t NDIM>
861 bool FunctionImpl<T,NDIM>::autorefine_square_test(const keyT& key, const nodeT& t) const {
862 double lo, hi;
863 tnorm(t.coeff().full_tensor_copy(), &lo, &hi);
864 double test = 2*lo*hi + hi*hi;
865 //print("autoreftest",key,thresh,truncate_tol(thresh, key),lo,hi,test);
866 return test> truncate_tol(thresh, key);
867 }
868
869
870 /// is this the same as trickle_down() ?
871 template <typename T, std::size_t NDIM>
873 typename dcT::accessor acc;
874 coeffs.insert(acc,key);
875 nodeT& node = acc->second;
876 coeffT& c = node.coeff();
877
878 //print(key,"received",s.normf(),c.normf(),node.has_children());
879
880 if (s.size() > 0) {
881 if (c.size() > 0)
882 c.gaxpy(1.0,s,1.0);
883 else
884 c = s;
885 }
886
887 if (node.has_children()) {
888 coeffT d;
889 if (c.has_data()) {
890 d = coeffT(cdata.v2k,targs);
891 d(cdata.s0) += c;
892 d = unfilter(d);
893 node.clear_coeff();
894 }
895 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
896 coeffT ss;
897 const keyT& child = kit.key();
898 if (d.size() > 0) ss = copy(d(child_patch(child)));
899 //print(key,"sending",ss.normf(),"to",child);
900 woT::task(coeffs.owner(child), &implT::sum_down_spawn, child, ss);
901 }
902 }
903 else {
904 // Missing coeffs assumed to be zero
905 if (c.size() <= 0) c = coeffT(cdata.vk,targs);
906 }
907 }
908
909 /// After 1d push operator must sum coeffs down the tree to restore correct scaling function coefficients
910 template <typename T, std::size_t NDIM>
912 tree_state=reconstructed;
913 if (world.rank() == coeffs.owner(cdata.key0)) sum_down_spawn(cdata.key0, coeffT());
914 if (fence) world.gop.fence();
915 }
916
917
918 template <typename T, std::size_t NDIM>
920 const implT* f,
921 const keyT& key,
922 const std::pair<keyT,coeffT>& left,
923 const std::pair<keyT,coeffT>& center,
924 const std::pair<keyT,coeffT>& right) {
925 D->forward_do_diff1(f,this,key,left,center,right);
926 }
927
928
929 template <typename T, std::size_t NDIM>
931 const implT* f,
932 const keyT& key,
933 const std::pair<keyT,coeffT>& left,
934 const std::pair<keyT,coeffT>& center,
935 const std::pair<keyT,coeffT>& right) {
936 D->do_diff1(f,this,key,left,center,right);
937 }
938
939
940 // Called by result function to differentiate f
941 template <typename T, std::size_t NDIM>
942 void FunctionImpl<T,NDIM>::diff(const DerivativeBase<T,NDIM>* D, const implT* f, bool fence) {
943 typedef std::pair<keyT,coeffT> argT;
944 for (const auto& [key, node]: f->coeffs) {
945 if (node.has_coeff()) {
946 Future<argT> left = D->find_neighbor(f, key,-1);
947 argT center(key,node.coeff());
948 Future<argT> right = D->find_neighbor(f, key, 1);
949 world.taskq.add(*this, &implT::do_diff1, D, f, key, left, center, right, TaskAttributes::hipri());
950 }
951 else {
952 coeffs.replace(key,nodeT(coeffT(),true)); // Empty internal node
953 }
954 }
955 if (fence) world.gop.fence();
956 }
957
958
959 /// return the a std::pair<key, node>, which MUST exist
960 template <typename T, std::size_t NDIM>
962 MADNESS_ASSERT(coeffs.probe(key));
963 ShallowNode<T,NDIM> snode(coeffs.find(key).get()->second);
964 return std::pair<Key<NDIM>,ShallowNode<T,NDIM> >(key,snode);
965 }
966
967 /// multiply the ket with a one-electron potential rr(1,2)= f(1,2)*g(1)
968
969 /// @param[in] val_ket function values of f(1,2)
970 /// @param[in] val_pot function values of g(1)
971 /// @param[in] particle if 0 then g(1), if 1 then g(2)
972 /// @return the resulting function values
973 template <typename T, std::size_t NDIM>
975 const coeffT& val_pot, int particle) const {
976
979 MADNESS_ASSERT(val_ket.is_svd_tensor());
980
981 std::vector<long> vkhalf=std::vector<long>(NDIM/2,cdata.vk[0]);
982 tensorT ones=tensorT(vkhalf);
983 ones=1.0;
984
985 TensorArgs targs(-1.0,val_ket.tensor_type());
986 coeffT pot12;
987 if (particle==0) pot12=outer(val_pot.full_tensor(),ones,targs);
988 else if (particle==1) pot12=outer(ones,val_pot.full_tensor(),targs);
989
990 coeffT result=copy(val_ket);
991 result.emul(pot12);
992
993 return result;
994 }
995
996
997 /// given several coefficient tensors, assemble a result tensor
998
999 /// the result looks like: (v(1,2) + v(1) + v(2)) |ket(1,2)>
1000 /// or (v(1,2) + v(1) + v(2)) |p(1) p(2)>
1001 /// i.e. coefficients for the ket and coefficients for the two particles are
1002 /// mutually exclusive. All potential terms are optional, just pass in empty coeffs.
1003 /// @param[in] key the key of the FunctionNode to which these coeffs belong
1004 /// @param[in] cket coefficients of the ket
1005 /// @param[in] vpotential1 function values of the potential for particle 1
1006 /// @param[in] vpotential2 function values of the potential for particle 2
1007 /// @param[in] veri function values for the 2-particle potential
1008 template <typename T, std::size_t NDIM>
1010 const keyT& key, const coeffT& coeff_ket, const coeffT& vpotential1,
1011 const coeffT& vpotential2, const tensorT& veri) const {
1012
1013 // take a shortcut if we are already done
1014 bool ket_only=(not (vpotential1.has_data() or vpotential2.has_data() or veri.has_data()));
1015 if (ket_only) return coeff_ket;
1016
1017 // switch to values instead of coefficients
1018 coeffT val_ket=coeffs2values(key,coeff_ket);
1019
1020 // the result tensor
1021 coeffT val_result=coeffT(val_ket.ndim(),val_ket.dims(),this->get_tensor_args().tt);
1022 coeffT coeff_result;
1023
1024 // potential for particles 1 and 2, must be done in TT_2D
1025 if (vpotential1.has_data() or vpotential2.has_data()) {
1026 val_ket=val_ket.convert(TensorArgs(-1.0,TT_2D));
1027 }
1028 if (vpotential1.has_data()) val_result+=multiply(val_ket,vpotential1,0);
1029 if (vpotential2.has_data()) val_result+=multiply(val_ket,vpotential2,1);
1030
1031 // values for eri: this must be done in full rank...
1032 if (veri.has_data()) {
1033 tensorT val_ket2=val_ket.full_tensor_copy().emul(veri);
1034 if (val_result.has_data()) val_ket2+=val_result.full_tensor_copy();
1035 // values2coeffs expensive (30%), coeffT() (relatively) cheap (8%)
1036 coeff_result=coeffT(values2coeffs(key,val_ket2),this->get_tensor_args());
1037
1038 } else {
1039
1040 // convert back to original tensor type
1041 val_ket=val_ket.convert(get_tensor_args());
1042 MADNESS_ASSERT(val_result.has_data());
1043 coeff_result=values2coeffs(key,val_result);
1044 coeff_result.reduce_rank(this->get_tensor_args().thresh);
1045 }
1046
1047 return coeff_result;
1048
1049 }
1050
1051 /// Permute the dimensions of f according to map, result on this
1052 template <typename T, std::size_t NDIM>
1053 void FunctionImpl<T,NDIM>::mapdim(const implT& f, const std::vector<long>& map, bool fence) {
1054
1056 const_cast<implT*>(&f)->flo_unary_op_node_inplace(do_mapdim(map,*this),fence);
1057
1058 }
1059
1060 /// mirror the dimensions of f according to mirror, result on this
1061 template <typename T, std::size_t NDIM>
1062 void FunctionImpl<T,NDIM>::mirror(const implT& f, const std::vector<long>& mirrormap, bool fence) {
1064 const_cast<implT*>(&f)->flo_unary_op_node_inplace(do_mirror(mirrormap,*this),fence);
1065 }
1066
1067 /// map and mirror the translation index and the coefficients, result on this
1068
1069 /// first map the dimensions, the mirror!
1070 /// this = mirror(map(f))
1071 template <typename T, std::size_t NDIM>
1072 void FunctionImpl<T,NDIM>::map_and_mirror(const implT& f, const std::vector<long>& map,
1073 const std::vector<long>& mirror, bool fence) {
1075 const_cast<implT*>(&f)->flo_unary_op_node_inplace(do_map_and_mirror(map,mirror,*this),fence);
1076 }
1077
1078
1079
1080 /// take the average of two functions, similar to: this=0.5*(this+rhs)
1081
1082 /// works in either basis and also in nonstandard form
1083 template <typename T, std::size_t NDIM>
1085
1086 rhs.flo_unary_op_node_inplace(do_average(*this),true);
1087 this->scale_inplace(0.5,true);
1088 flo_unary_op_node_inplace(do_reduce_rank(targs),true);
1089 }
1090
1091 /// change the tensor type of the coefficients in the FunctionNode
1092
1093 /// @param[in] targs target tensor arguments (threshold and full/low rank)
1094 template <typename T, std::size_t NDIM>
1096 flo_unary_op_node_inplace(do_change_tensor_type(targs,*this),fence);
1097 }
1098
1099 /// reduce the rank of the coefficients tensors
1100
1101 /// @param[in] targs target tensor arguments (threshold and full/low rank)
1102 template <typename T, std::size_t NDIM>
1103 void FunctionImpl<T,NDIM>::reduce_rank(const double thresh, bool fence) {
1104 flo_unary_op_node_inplace(do_reduce_rank(thresh),fence);
1105 }
1106
1107 /// reduce the rank of the coefficients tensors
1108
1109 /// @param[in] targs target tensor arguments (threshold and full/low rank)
1110 template <typename T, std::size_t NDIM>
1111 void FunctionImpl<T,NDIM>::chop_at_level(const int n, bool fence) {
1112 std::list<keyT> to_be_erased;
1113 for (auto it=coeffs.begin(); it!=coeffs.end(); ++it) {
1114 const keyT& key=it->first;
1115 nodeT& node=it->second;
1116 if (key.level()==n) node.set_is_leaf(true);
1117 if (key.level()>n) to_be_erased.push_back(key);
1118 }
1119 for (auto& key : to_be_erased) coeffs.erase(key);
1120 }
1121
1122
1123/// compute norm of s and d coefficients for all nodes
1124
1125 /// @param[in] targs target tensor arguments (threshold and full/low rank)
1126 template <typename T, std::size_t NDIM>
1128 //const auto& data=FunctionCommonData<T,NDIM>::get(get_k());
1129 flo_unary_op_node_inplace(
1130 do_compute_snorm_and_dnorm(cdata),fence);
1131 }
1132
1133
1134/// Transform sum coefficients at level n to sums+differences at level n-1
1135
1136/// Given scaling function coefficients s[n][l][i] and s[n][l+1][i]
1137/// return the scaling function and wavelet coefficients at the
1138/// coarser level. I.e., decompose Vn using Vn = Vn-1 + Wn-1.
1139 /// \code
1140 /// s_i = sum(j) h0_ij*s0_j + h1_ij*s1_j
1141 /// d_i = sum(j) g0_ij*s0_j + g1_ij*s1_j
1142 // \endcode
1143 /// Returns a new tensor and has no side effects. Works for any
1144 /// number of dimensions.
1145 ///
1146 /// No communication involved.
1147 template <typename T, std::size_t NDIM>
1149 tensorT r(cdata.v2k,false);
1150 tensorT w(cdata.v2k,false);
1151 return fast_transform(s,cdata.hgT,r,w);
1152 //return transform(s,cdata.hgT);
1153 }
1154
1155 template <typename T, std::size_t NDIM>
1157 coeffT result=transform(s,cdata.hgT);
1158 return result;
1159 }
1160
1161 /// Transform sums+differences at level n to sum coefficients at level n+1
1162
1163 /// Given scaling function and wavelet coefficients (s and d)
1164 /// returns the scaling function coefficients at the next finer
1165 /// level. I.e., reconstruct Vn using Vn = Vn-1 + Wn-1.
1166 /// \code
1167 /// s0 = sum(j) h0_ji*s_j + g0_ji*d_j
1168 /// s1 = sum(j) h1_ji*s_j + g1_ji*d_j
1169 /// \endcode
1170 /// Returns a new tensor and has no side effects
1171 ///
1172 /// If (sonly) ... then ss is only the scaling function coeff (and
1173 /// assume the d are zero). Works for any number of dimensions.
1174 ///
1175 /// No communication involved.
1176 template <typename T, std::size_t NDIM>
1178 tensorT r(cdata.v2k,false);
1179 tensorT w(cdata.v2k,false);
1180 return fast_transform(s,cdata.hg,r,w);
1181 //return transform(s, cdata.hg);
1182 }
1184 template <typename T, std::size_t NDIM>
1186 return transform(s,cdata.hg);
1187 }
1188
1189 /// downsample the sum coefficients of level n+1 to sum coeffs on level n
1190
1191 /// specialization of the filter method, will yield only the sum coefficients
1192 /// @param[in] key key of level n
1193 /// @param[in] v vector of sum coefficients of level n+1
1194 /// @param[in] args TensorArguments for possible low rank approximations
1195 /// @return sum coefficients on level n in full tensor format
1196 template <typename T, std::size_t NDIM>
1198
1199 tensorT result(cdata.vk);
1200
1201 // the twoscale coefficients: for downsampling use h0/h1; see Alpert Eq (3.34a)
1202 const tensorT h[2] = {cdata.h0T, cdata.h1T};
1203 tensorT matrices[NDIM];
1204
1205 // loop over all child nodes, transform and accumulate
1206 long i=0;
1207 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
1208
1209 // get the appropriate twoscale coefficients for each dimension
1210 for (size_t ii=0; ii<NDIM; ++ii) matrices[ii]=h[kit.key().translation()[ii]%2];
1211
1212 // transform and accumulate on the result
1213 result+=general_transform(v[i].get(),matrices).full_tensor_copy();
1214
1215 }
1216 return result;
1217 }
1218
1219 /// upsample the sum coefficients of level 1 to sum coeffs on level n+1
1220
1221 /// specialization of the unfilter method, will transform only the sum coefficients
1222 /// @param[in] key key of level n+1
1223 /// @param[in] coeff sum coefficients of level n (does NOT belong to key!!)
1224 /// @param[in] args TensorArguments for possible low rank approximations
1225 /// @return sum coefficients on level n+1
1226 template <typename T, std::size_t NDIM>
1228
1229 // the twoscale coefficients: for upsampling use h0/h1; see Alpert Eq (3.35a/b)
1230 // note there are no difference coefficients; if you want that use unfilter
1231 const tensorT h[2] = {cdata.h0, cdata.h1};
1232 tensorT matrices[NDIM];
1233
1234 // get the appropriate twoscale coefficients for each dimension
1235 for (size_t ii=0; ii<NDIM; ++ii) matrices[ii]=h[key.translation()[ii]%2];
1236
1237 // transform and accumulate on the result
1238 const coeffT result=general_transform(coeff,matrices);
1239 return result;
1240 }
1241
1242
1243 /// Projects old function into new basis (only in reconstructed form)
1244 template <typename T, std::size_t NDIM>
1245 void FunctionImpl<T,NDIM>::project(const implT& old, bool fence) {
1246 long kmin = std::min(cdata.k,old.cdata.k);
1247 std::vector<Slice> s(NDIM,Slice(0,kmin-1));
1248 typename dcT::const_iterator end = old.coeffs.end();
1249 for (typename dcT::const_iterator it=old.coeffs.begin(); it!=end; ++it) {
1250 const keyT& key = it->first;
1251 const nodeT& node = it->second;
1252 if (node.has_coeff()) {
1253 coeffT c(cdata.vk,targs);
1254 c(s) += node.coeff()(s);
1255 coeffs.replace(key,nodeT(c,false));
1256 }
1257 else {
1258 coeffs.replace(key,nodeT(coeffT(),true));
1260 }
1261 if (fence)
1262 world.gop.fence();
1263 }
1264
1265 template <typename T, std::size_t NDIM>
1267 return coeffs.probe(key) && coeffs.find(key).get()->second.has_children();
1269
1270 template <typename T, std::size_t NDIM>
1272 return coeffs.probe(key) && (not coeffs.find(key).get()->second.has_children());
1273 }
1275
1276 template <typename T, std::size_t NDIM>
1277 void FunctionImpl<T,NDIM>::broaden_op(const keyT& key, const std::vector< Future <bool> >& v) {
1278 for (unsigned int i=0; i<v.size(); ++i) {
1279 if (v[i]) {
1280 refine_op(true_refine_test(), key);
1281 break;
1282 }
1283 }
1285
1286 // For each local node sets value of norm tree, snorm and dnorm to 0.0
1287 template <typename T, std::size_t NDIM>
1289 typename dcT::iterator end = coeffs.end();
1290 for (typename dcT::iterator it=coeffs.begin(); it!=end; ++it) {
1291 it->second.set_norm_tree(0.0);
1292 it->second.set_snorm(0.0);
1293 it->second.set_dnorm(0.0);
1294 }
1297 // Broaden tree
1298 template <typename T, std::size_t NDIM>
1299 void FunctionImpl<T,NDIM>::broaden(const array_of_bools<NDIM>& is_periodic, bool fence) {
1300 typename dcT::iterator end = coeffs.end();
1301 for (typename dcT::iterator it=coeffs.begin(); it!=end; ++it) {
1302 const keyT& key = it->first;
1303 typename dcT::accessor acc;
1304 const auto found = coeffs.find(acc,key);
1305 MADNESS_CHECK(found);
1306 nodeT& node = acc->second;
1307 if (node.has_coeff() &&
1308 node.get_norm_tree() != -1.0 &&
1309 node.coeff().normf() >= truncate_tol(thresh,key)) {
1311 node.set_norm_tree(-1.0); // Indicates already broadened or result of broadening/refining
1313 //int ndir = std::pow(3,NDIM);
1314 int ndir = static_cast<int>(std::pow(static_cast<double>(3), static_cast<int>(NDIM)));
1315 std::vector< Future <bool> > v = future_vector_factory<bool>(ndir);
1316 keyT neigh;
1317 int i=0;
1318 for (HighDimIndexIterator it(NDIM,3); it; ++it) {
1320 for (std::size_t d=0; d<NDIM; ++d) {
1321 const int odd = key.translation()[d] & 0x1L; // 1 if odd, 0 if even
1322 l[d] -= 1; // (0,1,2) --> (-1,0,1)
1323 if (l[d] == -1)
1324 l[d] = -1-odd;
1325 else if (l[d] == 1)
1326 l[d] = 2 - odd;
1327 }
1328 keyT neigh = neighbor(key, keyT(key.level(),l), is_periodic);
1329
1330 if (neigh.is_valid()) {
1331 v[i++] = this->task(coeffs.owner(neigh), &implT::exists_and_has_children, neigh);
1332 }
1333 else {
1334 v[i++].set(false);
1335 }
1336 }
1337 woT::task(world.rank(), &implT::broaden_op, key, v);
1338 }
1339 }
1340 // Reset value of norm tree so that can repeat broadening
1341 if (fence) {
1342 world.gop.fence();
1343 zero_norm_tree();
1344 world.gop.fence();
1345 }
1346 }
1347
1348 /// sum all the contributions from all scales after applying an operator in mod-NS form
1349 template <typename T, std::size_t NDIM>
1351 set_tree_state(reconstructed);
1352 if (world.rank() == coeffs.owner(cdata.key0))
1353 woT::task(world.rank(), &implT::trickle_down_op, cdata.key0,coeffT());
1354 if (fence) world.gop.fence();
1355 }
1356
1357 /// sum all the contributions from all scales after applying an operator in mod-NS form
1359 /// cf reconstruct_op
1360 template <typename T, std::size_t NDIM>
1362 // Note that after application of an integral operator not all
1363 // siblings may be present so it is necessary to check existence
1364 // and if absent insert an empty leaf node.
1365 //
1366 // If summing the result of an integral operator (i.e., from
1367 // non-standard form) there will be significant scaling function
1368 // coefficients at all levels and possibly difference coefficients
1369 // in leaves, hence the tree may refine as a result.
1370 typename dcT::iterator it = coeffs.find(key).get();
1371 if (it == coeffs.end()) {
1372 coeffs.replace(key,nodeT(coeffT(),false));
1373 it = coeffs.find(key).get();
1375 nodeT& node = it->second;
1376
1377 // The integral operator will correctly connect interior nodes
1378 // to children but may leave interior nodes without coefficients
1379 // ... but they still need to sum down so just give them zeros
1380 if (node.coeff().has_no_data()) node.coeff()=coeffT(cdata.vk,targs);
1381
1382 // if (node.has_children() || node.has_coeff()) { // Must allow for inconsistent state from transform, etc.
1383 if (node.has_children()) { // Must allow for inconsistent state from transform, etc.
1384 coeffT d = node.coeff();
1385 if (key.level() > 0) d += s; // -- note accumulate for NS summation
1386 node.clear_coeff();
1387 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
1388 const keyT& child = kit.key();
1389 coeffT ss= upsample(child,d);
1390 ss.reduce_rank(thresh);
1391 PROFILE_BLOCK(recon_send);
1392 woT::task(coeffs.owner(child), &implT::trickle_down_op, child, ss);
1394 }
1395 else {
1396 node.coeff()+=s;
1397 node.coeff().reduce_rank(thresh);
1398 }
1399 }
1400
1401 /// change the tree state of this function, might or might not respect fence!
1402 template <typename T, std::size_t NDIM>
1403 void FunctionImpl<T,NDIM>::change_tree_state(const TreeState finalstate, bool fence) {
1404
1405 TreeState current_state=get_tree_state();
1406 if (current_state==finalstate) return;
1407
1408 // try direct conversion if possible, otherwise change to reconstructed state,
1409 // and then convert to final state
1410
1411 // try direct conversion
1412 if (finalstate==reconstructed) { // this MUST cover all cases
1413 if (current_state==compressed) reconstruct(fence);
1414 else if (current_state==nonstandard) reconstruct(fence);
1415 else if (current_state==nonstandard_after_apply) reconstruct(fence);
1416 else if (current_state==nonstandard_with_leaves) {
1417 remove_internal_coefficients(fence);
1418 set_tree_state(reconstructed);
1419 }
1420 else if (current_state==redundant) {
1421 remove_internal_coefficients(fence);
1422 set_tree_state(reconstructed);
1423 }
1424 else if (current_state==redundant_after_merge) {
1425 sum_down(fence);
1426 set_tree_state(reconstructed);
1427 }
1428 else if (current_state==redundant_after_merge) sum_down(fence);
1429 else MADNESS_EXCEPTION("unknown/unsupported current tree state",1);
1430 set_tree_state(reconstructed);
1431 } else if (finalstate==compressed) { // cases that are not covered will be done in two steps
1432 if (current_state==reconstructed) compress(compressed,fence);
1433 if (current_state==nonstandard) standard(fence);
1434 if (current_state==nonstandard_with_leaves) standard(fence);
1435 } else if (finalstate==nonstandard) { // cases that are not covered will be done in two steps
1436 if (current_state==reconstructed) compress(nonstandard,fence);
1437 if (current_state==nonstandard_with_leaves) {
1438 remove_leaf_coefficients(fence);
1439 set_tree_state(nonstandard);
1441 } else if (finalstate==nonstandard_with_leaves) { // cases that are not covered will be done in two steps
1442 if (current_state==reconstructed) compress(nonstandard_with_leaves,fence);
1443 } else if (finalstate==redundant) { // cases that are not covered will be done in two steps
1444 if (current_state==reconstructed) make_redundant(fence);
1445 } else {
1446 MADNESS_EXCEPTION("unknown/unsupported final tree state",1);
1447 }
1448 if (fence && VERIFY_TREE) verify_tree(); // Must be after in case nonstandard
1450 // direct conversion worked, we're good
1451 if (finalstate==get_tree_state()) return;
1452
1453
1454 // go through reconstructed state -- requires fence!
1456 print("could not respect no-fence parameter in change_tree_state");
1457 change_tree_state(finalstate,fence);
1458
1459 }
1460
1461
1462
1463 template <typename T, std::size_t NDIM>
1465
1466 if (is_reconstructed()) return;
1467
1468 if (is_redundant() or is_nonstandard_with_leaves()) {
1469 set_tree_state(reconstructed);
1470 this->remove_internal_coefficients(fence);
1471 } else if (is_compressed() or tree_state==nonstandard_after_apply) {
1472 // Must set true here so that successive calls without fence do the right thing
1473 set_tree_state(reconstructed);
1474 if (world.rank() == coeffs.owner(cdata.key0))
1475 woT::task(world.rank(), &implT::reconstruct_op, cdata.key0,coeffT(), true);
1476 } else if (is_nonstandard()) {
1477 // Must set true here so that successive calls without fence do the right thing
1478 set_tree_state(reconstructed);
1479 if (world.rank() == coeffs.owner(cdata.key0))
1480 woT::task(world.rank(), &implT::reconstruct_op, cdata.key0,coeffT(), false);
1481 } else {
1482 MADNESS_EXCEPTION("cannot reconstruct this tree",1);
1483 }
1484 if (fence) world.gop.fence();
1485
1486 }
1487
1488 /// compress the wave function
1489
1490 /// after application there will be sum coefficients at the root level,
1491 /// and difference coefficients at all other levels; furthermore:
1492 /// @param[in] nonstandard keep sum coeffs at all other levels, except leaves
1493 /// @param[in] keepleaves keep sum coeffs (but no diff coeffs) at leaves
1494 /// @param[in] redundant keep only sum coeffs at all levels, discard difference coeffs
1495 template <typename T, std::size_t NDIM>
1496 void FunctionImpl<T,NDIM>::compress(const TreeState newstate, bool fence) {
1497 MADNESS_CHECK_THROW(is_reconstructed(),"impl::compress wants a reconstructe tree");
1498 // Must set true here so that successive calls without fence do the right thing
1499 set_tree_state(newstate);
1500 bool keepleaves1=(tree_state==nonstandard_with_leaves) or (tree_state==redundant);
1501 bool nonstandard1=(tree_state==nonstandard) or (tree_state==nonstandard_with_leaves);
1502 bool redundant1=(tree_state==redundant);
1503
1504 if (world.rank() == coeffs.owner(cdata.key0)) {
1505
1506 compress_spawn(cdata.key0, nonstandard1, keepleaves1, redundant1);
1507 }
1508 if (fence)
1509 world.gop.fence();
1510 }
1511
1512 template <typename T, std::size_t NDIM>
1514 flo_unary_op_node_inplace(remove_internal_coeffs(),fence);
1515 }
1516
1517 template <typename T, std::size_t NDIM>
1519 flo_unary_op_node_inplace(remove_leaf_coeffs(),fence);
1520 }
1521
1522 /// convert this to redundant, i.e. have sum coefficients on all levels
1523 template <typename T, std::size_t NDIM>
1525
1526 // fast return if possible
1527 if (is_redundant()) return;
1528 MADNESS_CHECK_THROW(is_reconstructed(),"impl::make_redundant() wants a reconstructed tree");
1529 compress(redundant,fence);
1530 }
1531
1532 /// convert this from redundant to standard reconstructed form
1533 template <typename T, std::size_t NDIM>
1535 MADNESS_CHECK_THROW(is_redundant(),"impl::undo_redundant() wants a redundant tree");
1536 set_tree_state(reconstructed);
1537 flo_unary_op_node_inplace(remove_internal_coeffs(),fence);
1538 }
1539
1540
1541 /// compute for each FunctionNode the norm of the function inside that node
1542 template <typename T, std::size_t NDIM>
1544 if (world.rank() == coeffs.owner(cdata.key0))
1545 norm_tree_spawn(cdata.key0);
1546 if (fence)
1547 world.gop.fence();
1548 }
1549
1550 template <typename T, std::size_t NDIM>
1551 double FunctionImpl<T,NDIM>::norm_tree_op(const keyT& key, const std::vector< Future<double> >& v) {
1552 //PROFILE_MEMBER_FUNC(FunctionImpl);
1553 double sum = 0.0;
1554 int i=0;
1555 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
1556 double value = v[i].get();
1557 sum += value*value;
1558 }
1559 sum = sqrt(sum);
1560 coeffs.task(key, &nodeT::set_norm_tree, sum); // why a task? because send is deprecated to keep comm thread free
1561 //if (key.level() == 0) std::cout << "NORM_TREE_TOP " << sum << "\n";
1562 return sum;
1563 }
1564
1565 template <typename T, std::size_t NDIM>
1567 nodeT& node = coeffs.find(key).get()->second;
1568 if (node.has_children()) {
1569 std::vector< Future<double> > v = future_vector_factory<double>(1<<NDIM);
1570 int i=0;
1571 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
1572 v[i] = woT::task(coeffs.owner(kit.key()), &implT::norm_tree_spawn, kit.key());
1573 }
1574 return woT::task(world.rank(),&implT::norm_tree_op, key, v);
1575 }
1576 else {
1577 // return Future<double>(node.coeff().normf());
1578 const double norm=node.coeff().normf();
1579 // invoked locally anyways
1580 node.set_norm_tree(norm);
1581 return Future<double>(norm);
1582 }
1583 }
1584
1585 /// truncate using a tree in reconstructed form
1586
1587 /// must be invoked where key is local
1588 template <typename T, std::size_t NDIM>
1590 MADNESS_ASSERT(coeffs.probe(key));
1591 nodeT& node = coeffs.find(key).get()->second;
1592
1593 // if this is a leaf node just return the sum coefficients
1594 if (not node.has_children()) return Future<coeffT>(node.coeff());
1595
1596 // if this is an internal node, wait for all the children's sum coefficients
1597 // and use them to determine if the children can be removed
1598 std::vector<Future<coeffT> > v = future_vector_factory<coeffT>(1<<NDIM);
1599 int i=0;
1600 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
1601 v[i] = woT::task(coeffs.owner(kit.key()), &implT::truncate_reconstructed_spawn, kit.key(),tol,TaskAttributes::hipri());
1602 }
1603
1604 // will return (possibly empty) sum coefficients
1605 return woT::task(world.rank(),&implT::truncate_reconstructed_op,key,v,tol,TaskAttributes::hipri());
1606
1607 }
1608
1609 /// given the sum coefficients of all children, truncate or not
1610
1611 /// @return new sum coefficients (empty if internal, not empty, if new leaf); might delete its children
1612 template <typename T, std::size_t NDIM>
1613 typename FunctionImpl<T,NDIM>::coeffT FunctionImpl<T,NDIM>::truncate_reconstructed_op(const keyT& key, const std::vector< Future<coeffT > >& v, const double tol) {
1614
1615 MADNESS_ASSERT(coeffs.probe(key));
1616
1617 // the sum coefficients might be empty, which means they come from an internal node
1618 // and we must not truncate; so just return empty coeffs again
1619 for (size_t i=0; i<v.size(); ++i) if (v[i].get().has_no_data()) return coeffT();
1620
1621 // do not truncate below level 1
1622 if (key.level()<2) return coeffT();
1623
1624 // compute the wavelet coefficients from the child nodes
1625 typename dcT::accessor acc;
1626 const auto found = coeffs.find(acc, key);
1627 MADNESS_CHECK(found);
1628 int i=0;
1629 tensorT d(cdata.v2k);
1630 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
1631 // d(child_patch(kit.key())) += v[i].get();
1632 d(child_patch(kit.key())) += v[i].get().full_tensor_copy();
1633 }
1634
1635 d = filter(d);
1636 tensorT s=copy(d(cdata.s0));
1637 d(cdata.s0) = 0.0;
1638 const double error=d.normf();
1639
1640 nodeT& node = coeffs.find(key).get()->second;
1641
1642 if (error < truncate_tol(tol,key)) {
1643 node.set_has_children(false);
1644 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
1645 coeffs.erase(kit.key());
1646 }
1647 // "replace" children with new sum coefficients
1648 coeffT ss=coeffT(s,targs);
1649 acc->second.set_coeff(ss);
1650 return ss;
1651 } else {
1652 return coeffT();
1653 }
1654 }
1655
1656 /// calculate the wavelet coefficients using the sum coefficients of all child nodes
1657
1658 /// @param[in] key this's key
1659 /// @param[in] v sum coefficients of the child nodes
1660 /// @param[in] nonstandard keep the sum coefficients with the wavelet coefficients
1661 /// @param[in] redundant keep only the sum coefficients, discard the wavelet coefficients
1662 /// @return the sum coefficients
1663 template <typename T, std::size_t NDIM>
1664 std::pair<typename FunctionImpl<T,NDIM>::coeffT,double> FunctionImpl<T,NDIM>::compress_op(const keyT& key,
1665 const std::vector< Future<std::pair<coeffT,double> > >& v, bool nonstandard1) {
1666 //PROFILE_MEMBER_FUNC(FunctionImpl);
1667
1668 double cpu0=cpu_time();
1669 // Copy child scaling coeffs into contiguous block
1670 tensorT d(cdata.v2k);
1671 // coeffT d(cdata.v2k,targs);
1672 int i=0;
1673 double norm_tree2=0.0;
1674 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
1675 // d(child_patch(kit.key())) += v[i].get();
1676 d(child_patch(kit.key())) += v[i].get().first.full_tensor_copy();
1677 norm_tree2+=v[i].get().second*v[i].get().second;
1678 }
1679
1680 d = filter(d);
1681 double cpu1=cpu_time();
1682 timer_filter.accumulate(cpu1-cpu0);
1683 cpu0=cpu1;
1684
1685 typename dcT::accessor acc;
1686 const auto found = coeffs.find(acc, key);
1687 MADNESS_CHECK(found);
1688 MADNESS_CHECK_THROW(!acc->second.has_coeff(),"compress_op: existing coeffs where there should be none");
1689
1690 // tighter thresh for internal nodes
1691 TensorArgs targs2=targs;
1692 targs2.thresh*=0.1;
1693
1694 // need the deep copy for contiguity
1695 coeffT ss=coeffT(copy(d(cdata.s0)));
1696 double snorm=ss.normf();
1697
1698 if (key.level()> 0 && !nonstandard1) d(cdata.s0) = 0.0;
1699
1700 coeffT dd=coeffT(d,targs2);
1701 double dnorm=dd.normf();
1702 double norm_tree=sqrt(norm_tree2);
1703
1704 acc->second.set_snorm(snorm);
1705 acc->second.set_dnorm(dnorm);
1706 acc->second.set_norm_tree(norm_tree);
1707
1708 acc->second.set_coeff(dd);
1709 cpu1=cpu_time();
1710 timer_compress_svd.accumulate(cpu1-cpu0);
1711
1712 // return sum coefficients
1713 return std::make_pair(ss,snorm);
1714 }
1715
1716 /// similar to compress_op, but insert only the sum coefficients in the tree
1717
1718 /// also sets snorm, dnorm and norm_tree for all nodes
1719 /// @param[in] key this's key
1720 /// @param[in] v sum coefficients of the child nodes
1721 /// @return the sum coefficients
1722 template <typename T, std::size_t NDIM>
1723 std::pair<typename FunctionImpl<T,NDIM>::coeffT,double>
1724 FunctionImpl<T,NDIM>::make_redundant_op(const keyT& key, const std::vector< Future<std::pair<coeffT,double> > >& v) {
1725
1726 tensorT d(cdata.v2k);
1727 int i=0;
1728 double norm_tree2=0.0;
1729 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
1730 d(child_patch(kit.key())) += v[i].get().first.full_tensor_copy();
1731 norm_tree2+=v[i].get().second*v[i].get().second;
1732 }
1733 d = filter(d);
1734 double norm_tree=sqrt(norm_tree2);
1735
1736 // tighter thresh for internal nodes
1737 TensorArgs targs2=targs;
1738 targs2.thresh*=0.1;
1739
1740 // need the deep copy for contiguity
1741 coeffT s=coeffT(copy(d(cdata.s0)),targs2);
1742 d(cdata.s0)=0.0;
1743 double dnorm=d.normf();
1744 double snorm=s.normf();
1745
1746 typename dcT::accessor acc;
1747 const auto found = coeffs.find(acc, key);
1748 MADNESS_CHECK(found);
1749
1750 acc->second.set_coeff(s);
1751 acc->second.set_dnorm(dnorm);
1752 acc->second.set_snorm(snorm);
1753 acc->second.set_norm_tree(norm_tree);
1754
1755 // return sum coefficients
1756 return std::make_pair(s,norm_tree);
1757 }
1758
1759 /// Changes non-standard compressed form to standard compressed form
1760 template <typename T, std::size_t NDIM>
1762
1763 if (is_compressed()) return;
1764 set_tree_state(compressed);
1765 flo_unary_op_node_inplace(do_standard(this),fence);
1766// make_nonstandard = false;
1767 }
1768
1769
1770 /// after apply we need to do some cleanup;
1771
1772 /// forces fence
1773 template <typename T, std::size_t NDIM>
1775 bool print_timings=false;
1776 bool printme=(world.rank()==0 and print_timings);
1777 TensorArgs tight_args(targs);
1778 tight_args.thresh*=0.01;
1779 double begin=wall_time();
1780 double begin1=wall_time();
1781 flo_unary_op_node_inplace(do_consolidate_buffer(tight_args),true);
1782 double end1=wall_time();
1783 if (printme) printf("time in consolidate_buffer %8.4f\n",end1-begin1);
1784
1785
1786 // reduce the rank of the final nodes, leave full tensors unchanged
1787 // flo_unary_op_node_inplace(do_reduce_rank(tight_args.thresh),true);
1788 begin1=wall_time();
1789 flo_unary_op_node_inplace(do_reduce_rank(targs),true);
1790 end1=wall_time();
1791 if (printme) printf("time in do_reduce_rank %8.4f\n",end1-begin1);
1792
1793 // change TT_FULL to low rank
1794 begin1=wall_time();
1795 flo_unary_op_node_inplace(do_change_tensor_type(targs,*this),true);
1796 end1=wall_time();
1797 if (printme) printf("time in do_change_tensor_type %8.4f\n",end1-begin1);
1798
1799 // truncate leaf nodes to avoid excessive tree refinement
1800 begin1=wall_time();
1801 flo_unary_op_node_inplace(do_truncate_NS_leafs(this),true);
1802 end1=wall_time();
1803 if (printme) printf("time in do_truncate_NS_leafs %8.4f\n",end1-begin1);
1804
1805 double end=wall_time();
1806 double elapsed=end-begin;
1807 set_tree_state(nonstandard_after_apply);
1808 world.gop.fence();
1809 return elapsed;
1810 }
1811
1812
1813 /// after summing up we need to do some cleanup;
1814
1815 /// forces fence
1816 template <typename T, std::size_t NDIM>
1818 world.gop.fence();
1819 flo_unary_op_node_inplace(do_consolidate_buffer(get_tensor_args()), true);
1820 sum_down(true);
1821 set_tree_state(reconstructed);
1822 }
1823
1824 /// Returns the square of the local norm ... no comms
1825 template <typename T, std::size_t NDIM>
1829 return world.taskq.reduce<double,rangeT,do_norm2sq_local>(rangeT(coeffs.begin(),coeffs.end()),
1831 }
1832
1833
1834
1835
1836 /// Returns the maximum local depth of the tree ... no communications.
1837 template <typename T, std::size_t NDIM>
1839 std::size_t maxdepth = 0;
1840 typename dcT::const_iterator end = coeffs.end();
1841 for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
1842 std::size_t N = (std::size_t) it->first.level();
1843 if (N> maxdepth)
1844 maxdepth = N;
1845 }
1846 return maxdepth;
1847 }
1848
1849
1850 /// Returns the maximum depth of the tree ... collective ... global sum/broadcast
1851 template <typename T, std::size_t NDIM>
1853 std::size_t maxdepth = max_local_depth();
1854 world.gop.max(maxdepth);
1855 return maxdepth;
1856 }
1857
1858 /// Returns the max number of nodes on a processor
1859 template <typename T, std::size_t NDIM>
1861 std::size_t maxsize = 0;
1862 maxsize = coeffs.size();
1863 world.gop.max(maxsize);
1864 return maxsize;
1865 }
1866
1867 /// Returns the min number of nodes on a processor
1868 template <typename T, std::size_t NDIM>
1870 std::size_t minsize = 0;
1871 minsize = coeffs.size();
1872 world.gop.min(minsize);
1873 return minsize;
1874 }
1875
1876 /// Returns the size of the tree structure of the function ... collective global sum
1877 template <typename T, std::size_t NDIM>
1879 std::size_t sum = 0;
1880 sum = coeffs.size();
1881 world.gop.sum(sum);
1882 return sum;
1883 }
1884
1885 /// Returns the number of coefficients in the function for each rank
1886 template <typename T, std::size_t NDIM>
1888 std::size_t sum = 0;
1889 for (const auto& [key,node] : coeffs) {
1890 if (node.has_coeff()) sum+=node.size();
1891 }
1892 return sum;
1893 }
1894
1895 /// Returns the number of coefficients in the function ... collective global sum
1896 template <typename T, std::size_t NDIM>
1897 std::size_t FunctionImpl<T,NDIM>::size() const {
1898 std::size_t sum = size_local();
1899 world.gop.sum(sum);
1900 return sum;
1901 }
1902
1903 /// Returns the number of coefficients in the function ... collective global sum
1904 template <typename T, std::size_t NDIM>
1906 std::size_t sum = coeffs.size() * (sizeof(keyT) + sizeof(nodeT));
1907 typename dcT::const_iterator end = coeffs.end();
1908 for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
1909 const nodeT& node = it->second;
1910 if (node.has_coeff()) sum+=node.coeff().real_size();
1911 }
1912 world.gop.sum(sum);
1913 return sum;
1914 }
1915
1916 /// Returns the number of coefficients in the function on this MPI rank
1917 template <typename T, std::size_t NDIM>
1919 std::size_t sum =0;
1920 for (auto& [key,node] : coeffs) {
1921 if (node.has_coeff()) sum+=node.coeff().nCoeff();
1922 }
1923 return sum;
1924 }
1925
1926 /// Returns the number of coefficients in the function ... collective global sum
1927 template <typename T, std::size_t NDIM>
1928 std::size_t FunctionImpl<T,NDIM>::nCoeff() const {
1929 std::size_t sum = nCoeff_local();
1930 world.gop.sum(sum);
1931 return sum;
1932 }
1933
1934
1935 /// print tree size and size
1936 template <typename T, std::size_t NDIM>
1937 void FunctionImpl<T,NDIM>::print_size(const std::string name) const {
1938 const size_t tsize=this->tree_size();
1939// const size_t size=this->size();
1940 const size_t ncoeff=this->nCoeff();
1941 const double wall=wall_time();
1942 const double d=sizeof(T);
1943 const double fac=1024*1024*1024;
1944
1945 double norm=0.0;
1946 {
1947 double local = norm2sq_local();
1948 this->world.gop.sum(local);
1949 this->world.gop.fence();
1950 norm=sqrt(local);
1951 }
1952
1953 if (this->world.rank()==0) {
1954
1955 constexpr std::size_t bufsize=128;
1956 char buf[bufsize];
1957 snprintf(buf, bufsize, "%40s at time %.1fs: norm/tree/#coeff/size: %7.5f %zu, %6.3f m, %6.3f GByte",
1958 (name.c_str()), wall, norm, tsize,double(ncoeff)*1.e-6,double(ncoeff)/fac*d);
1959 print(std::string(buf));
1960 }
1961 }
1962
1963 /// print the number of configurations per node
1964 template <typename T, std::size_t NDIM>
1966 if (this->targs.tt==TT_FULL) return;
1967 int dim=NDIM/2;
1968 int k0=k;
1969 if (is_compressed()) k0=2*k;
1970 Tensor<long> n(int(std::pow(double(k0),double(dim))+1));
1971 long n_full=0;
1972 long n_large=0;
1973
1974 if (world.rank()==0) print("n.size(),k0,dim",n.size(),k0,dim);
1975 typename dcT::const_iterator end = coeffs.end();
1976 for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
1977 const nodeT& node = it->second;
1978 if (node.has_coeff()) {
1979 if (node.coeff().rank()>long(n.size())) {
1980 ++n_large;
1981 } else if (node.coeff().rank()==-1) {
1982 ++n_full;
1983 } else if (node.coeff().rank()<0) {
1984 print("small rank",node.coeff().rank());
1985 } else {
1986 n[node.coeff().rank()]++;
1987 }
1988 }
1989 }
1990
1991 world.gop.sum(n.ptr(), n.size());
1992
1993 if (world.rank()==0) {
1994 print("configurations number of nodes");
1995 print(" full rank ",n_full);
1996 for (unsigned int i=0; i<n.size(); i++) {
1997 print(" ",i," ",n[i]);
1998 }
1999 print(" large rank ",n_large);
2000
2001 // repeat for logarithmic scale: <3, <10, <30, <100, ..
2002 Tensor<long> nlog(6);
2003 nlog=0;
2004 for (unsigned int i=0; i<std::min(3l,n.size()); i++) nlog[0]+=n[i];
2005 for (unsigned int i=3; i<std::min(10l,n.size()); i++) nlog[1]+=n[i];
2006 for (unsigned int i=10; i<std::min(30l,n.size()); i++) nlog[2]+=n[i];
2007 for (unsigned int i=30; i<std::min(100l,n.size()); i++) nlog[3]+=n[i];
2008 for (unsigned int i=100; i<std::min(300l,n.size()); i++) nlog[4]+=n[i];
2009 for (unsigned int i=300; i<std::min(1000l,n.size()); i++) nlog[5]+=n[i];
2010
2011 std::vector<std::string> slog={"3","10","30","100","300","1000"};
2012 for (unsigned int i=0; i<nlog.size(); i++) {
2013 print(" < ",slog[i]," ",nlog[i]);
2014 }
2015 print(" large rank ",n_large);
2016
2017 }
2018 }
2019
2020 template <typename T, std::size_t NDIM>
2023 const int k = cdata.k;
2024 double px[NDIM][k];
2025 T sum = T(0.0);
2026
2027 for (std::size_t i=0; i<NDIM; ++i) legendre_scaling_functions(x[i],k,px[i]);
2028
2029 if (NDIM == 1) {
2030 for (int p=0; p<k; ++p)
2031 sum += c(p)*px[0][p];
2032 }
2033 else if (NDIM == 2) {
2034 for (int p=0; p<k; ++p)
2035 for (int q=0; q<k; ++q)
2036 sum += c(p,q)*px[0][p]*px[1][q];
2037 }
2038 else if (NDIM == 3) {
2039 for (int p=0; p<k; ++p)
2040 for (int q=0; q<k; ++q)
2041 for (int r=0; r<k; ++r)
2042 sum += c(p,q,r)*px[0][p]*px[1][q]*px[2][r];
2043 }
2044 else if (NDIM == 4) {
2045 for (int p=0; p<k; ++p)
2046 for (int q=0; q<k; ++q)
2047 for (int r=0; r<k; ++r)
2048 for (int s=0; s<k; ++s)
2049 sum += c(p,q,r,s)*px[0][p]*px[1][q]*px[2][r]*px[3][s];
2050 }
2051 else if (NDIM == 5) {
2052 for (int p=0; p<k; ++p)
2053 for (int q=0; q<k; ++q)
2054 for (int r=0; r<k; ++r)
2055 for (int s=0; s<k; ++s)
2056 for (int t=0; t<k; ++t)
2057 sum += c(p,q,r,s,t)*px[0][p]*px[1][q]*px[2][r]*px[3][s]*px[4][t];
2058 }
2059 else if (NDIM == 6) {
2060 for (int p=0; p<k; ++p)
2061 for (int q=0; q<k; ++q)
2062 for (int r=0; r<k; ++r)
2063 for (int s=0; s<k; ++s)
2064 for (int t=0; t<k; ++t)
2065 for (int u=0; u<k; ++u)
2066 sum += c(p,q,r,s,t,u)*px[0][p]*px[1][q]*px[2][r]*px[3][s]*px[4][t]*px[5][u];
2067 }
2068 else {
2069 MADNESS_EXCEPTION("FunctionImpl:eval_cube:NDIM?",NDIM);
2070 }
2071 return sum*pow(2.0,0.5*NDIM*n)/sqrt(FunctionDefaults<NDIM>::get_cell_volume());
2072 }
2073
2074 template <typename T, std::size_t NDIM>
2075 void FunctionImpl<T,NDIM>::reconstruct_op(const keyT& key, const coeffT& s, const bool accumulate_NS) {
2076 //PROFILE_MEMBER_FUNC(FunctionImpl);
2077 // Note that after application of an integral operator not all
2078 // siblings may be present so it is necessary to check existence
2079 // and if absent insert an empty leaf node.
2080 //
2081 // If summing the result of an integral operator (i.e., from
2082 // non-standard form) there will be significant scaling function
2083 // coefficients at all levels and possibly difference coefficients
2084 // in leaves, hence the tree may refine as a result.
2085 typename dcT::iterator it = coeffs.find(key).get();
2086 if (it == coeffs.end()) {
2087 coeffs.replace(key,nodeT(coeffT(),false));
2088 it = coeffs.find(key).get();
2089 }
2090 nodeT& node = it->second;
2091
2092 // The integral operator will correctly connect interior nodes
2093 // to children but may leave interior nodes without coefficients
2094 // ... but they still need to sum down so just give them zeros
2095 if (node.has_children() && !node.has_coeff()) {
2096 node.set_coeff(coeffT(cdata.v2k,targs));
2097 }
2098
2099 if (node.has_children() || node.has_coeff()) { // Must allow for inconsistent state from transform, etc.
2100 coeffT d = node.coeff();
2101 if (!d.has_data()) d = coeffT(cdata.v2k,targs);
2102 if (accumulate_NS and (key.level() > 0)) d(cdata.s0) += s; // -- note accumulate for NS summation
2103 if (d.dim(0)==2*get_k()) { // d might be pre-truncated if it's a leaf
2104 d = unfilter(d);
2105 node.clear_coeff();
2106 node.set_has_children(true);
2107 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
2108 const keyT& child = kit.key();
2109 coeffT ss = copy(d(child_patch(child)));
2110 ss.reduce_rank(thresh);
2111 //PROFILE_BLOCK(recon_send); // Too fine grain for routine profiling
2112 woT::task(coeffs.owner(child), &implT::reconstruct_op, child, ss, accumulate_NS);
2113 }
2114 } else {
2115 MADNESS_ASSERT(node.is_leaf());
2116 // node.coeff()+=s;
2117 node.coeff().reduce_rank(targs.thresh);
2118 }
2119 }
2120 else {
2121 coeffT ss=s;
2122 if (s.has_no_data()) ss=coeffT(cdata.vk,targs);
2123 if (key.level()) node.set_coeff(copy(ss));
2124 else node.set_coeff(ss);
2125 }
2126 }
2127
2128 template <typename T, std::size_t NDIM>
2129 Tensor<T> fcube(const Key<NDIM>& key, T (*f)(const Vector<double,NDIM>&), const Tensor<double>& qx) {
2130 // fcube(key,typename FunctionFactory<T,NDIM>::FunctorInterfaceWrapper(f) , qx, fval);
2131 std::vector<long> npt(NDIM,qx.dim(0));
2132 Tensor<T> fval(npt);
2133 fcube(key,ElementaryInterface<T,NDIM>(f) , qx, fval);
2134 return fval;
2135 }
2136
2137 template <typename T, std::size_t NDIM>
2139 // fcube(key,typename FunctionFactory<T,NDIM>::FunctorInterfaceWrapper(f) , qx, fval);
2140 std::vector<long> npt(NDIM,qx.dim(0));
2141 Tensor<T> fval(npt);
2142 fcube(key, f, qx, fval);
2143 return fval;
2144 }
2145
2146 template <typename T, std::size_t NDIM>
2147 // void FunctionImpl<T,NDIM>::fcube(const keyT& key, const FunctionFunctorInterface<T,NDIM>& f, const Tensor<double>& qx, tensorT& fval) const {
2148 void fcube(const Key<NDIM>& key, const FunctionFunctorInterface<T,NDIM>& f, const Tensor<double>& qx, Tensor<T>& fval) {
2149 //~ template <typename T, std::size_t NDIM> template< typename FF>
2150 //~ void FunctionImpl<T,NDIM>::fcube(const keyT& key, const FF& f, const Tensor<double>& qx, tensorT& fval) const {
2152 //PROFILE_MEMBER_FUNC(FunctionImpl);
2153 const Vector<Translation,NDIM>& l = key.translation();
2154 const Level n = key.level();
2155 const double h = std::pow(0.5,double(n));
2156 coordT c; // will hold the point in user coordinates
2157 const int npt = qx.dim(0);
2158
2161
2162 // Do pre-screening of the FunctionFunctorInterface, f, before calculating f(r) at quadrature points
2163 coordT c1, c2;
2164 for (std::size_t i = 0; i < NDIM; i++) {
2165 c1[i] = cell(i,0) + h*cell_width[i]*(l[i] + qx((long)0));
2166 c2[i] = cell(i,0) + h*cell_width[i]*(l[i] + qx(npt-1));
2167 }
2168 if (f.screened(c1, c2)) {
2169 fval(___) = 0.0;
2170 return;
2171 }
2172
2174 bool vectorized = f.supports_vectorized();
2175 if (vectorized) {
2176 T* fvptr = fval.ptr();
2177 if (NDIM == 1) {
2178 double* x1 = new double[npt];
2179 int idx = 0;
2180 for (int i=0; i<npt; ++i, ++idx) {
2181 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2182 x1[idx] = c[0];
2183 }
2184 Vector<double*,1> xvals {x1};
2185 f(xvals, fvptr, npt);
2186 delete [] x1;
2187 }
2188 else if (NDIM == 2) {
2189 double* x1 = new double[npt*npt];
2190 double* x2 = new double[npt*npt];
2191 int idx = 0;
2192 for (int i=0; i<npt; ++i) {
2193 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2194 for (int j=0; j<npt; ++j, ++idx) {
2195 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2196 x1[idx] = c[0];
2197 x2[idx] = c[1];
2198 }
2199 }
2200 Vector<double*,2> xvals {x1, x2};
2201 f(xvals, fvptr, npt*npt);
2202 delete [] x1;
2203 delete [] x2;
2204 }
2205 else if (NDIM == 3) {
2206 double* x1 = new double[npt*npt*npt];
2207 double* x2 = new double[npt*npt*npt];
2208 double* x3 = new double[npt*npt*npt];
2209 int idx = 0;
2210 for (int i=0; i<npt; ++i) {
2211 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2212 for (int j=0; j<npt; ++j) {
2213 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2214 for (int k=0; k<npt; ++k, ++idx) {
2215 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2216 x1[idx] = c[0];
2217 x2[idx] = c[1];
2218 x3[idx] = c[2];
2219 }
2220 }
2221 }
2222 Vector<double*,3> xvals {x1, x2, x3};
2223 f(xvals, fvptr, npt*npt*npt);
2224 delete [] x1;
2225 delete [] x2;
2226 delete [] x3;
2227 }
2228 else if (NDIM == 4) {
2229 double* x1 = new double[npt*npt*npt*npt];
2230 double* x2 = new double[npt*npt*npt*npt];
2231 double* x3 = new double[npt*npt*npt*npt];
2232 double* x4 = new double[npt*npt*npt*npt];
2233 int idx = 0;
2234 for (int i=0; i<npt; ++i) {
2235 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2236 for (int j=0; j<npt; ++j) {
2237 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2238 for (int k=0; k<npt; ++k) {
2239 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2240 for (int m=0; m<npt; ++m, ++idx) {
2241 c[3] = cell(3,0) + h*cell_width[3]*(l[3] + qx(m)); // xx
2242 x1[idx] = c[0];
2243 x2[idx] = c[1];
2244 x3[idx] = c[2];
2245 x4[idx] = c[3];
2246 }
2247 }
2248 }
2249 }
2250 Vector<double*,4> xvals {x1, x2, x3, x4};
2251 f(xvals, fvptr, npt*npt*npt*npt);
2252 delete [] x1;
2253 delete [] x2;
2254 delete [] x3;
2255 delete [] x4;
2256 }
2257 else if (NDIM == 5) {
2258 double* x1 = new double[npt*npt*npt*npt*npt];
2259 double* x2 = new double[npt*npt*npt*npt*npt];
2260 double* x3 = new double[npt*npt*npt*npt*npt];
2261 double* x4 = new double[npt*npt*npt*npt*npt];
2262 double* x5 = new double[npt*npt*npt*npt*npt];
2263 int idx = 0;
2264 for (int i=0; i<npt; ++i) {
2265 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2266 for (int j=0; j<npt; ++j) {
2267 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2268 for (int k=0; k<npt; ++k) {
2269 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2270 for (int m=0; m<npt; ++m) {
2271 c[3] = cell(3,0) + h*cell_width[3]*(l[3] + qx(m)); // xx
2272 for (int n=0; n<npt; ++n, ++idx) {
2273 c[4] = cell(4,0) + h*cell_width[4]*(l[4] + qx(n)); // yy
2274 x1[idx] = c[0];
2275 x2[idx] = c[1];
2276 x3[idx] = c[2];
2277 x4[idx] = c[3];
2278 x5[idx] = c[4];
2279 }
2280 }
2281 }
2282 }
2283 }
2284 Vector<double*,5> xvals {x1, x2, x3, x4, x5};
2285 f(xvals, fvptr, npt*npt*npt*npt*npt);
2286 delete [] x1;
2287 delete [] x2;
2288 delete [] x3;
2289 delete [] x4;
2290 delete [] x5;
2291 }
2292 else if (NDIM == 6) {
2293 double* x1 = new double[npt*npt*npt*npt*npt*npt];
2294 double* x2 = new double[npt*npt*npt*npt*npt*npt];
2295 double* x3 = new double[npt*npt*npt*npt*npt*npt];
2296 double* x4 = new double[npt*npt*npt*npt*npt*npt];
2297 double* x5 = new double[npt*npt*npt*npt*npt*npt];
2298 double* x6 = new double[npt*npt*npt*npt*npt*npt];
2299 int idx = 0;
2300 for (int i=0; i<npt; ++i) {
2301 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2302 for (int j=0; j<npt; ++j) {
2303 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2304 for (int k=0; k<npt; ++k) {
2305 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2306 for (int m=0; m<npt; ++m) {
2307 c[3] = cell(3,0) + h*cell_width[3]*(l[3] + qx(m)); // xx
2308 for (int n=0; n<npt; ++n) {
2309 c[4] = cell(4,0) + h*cell_width[4]*(l[4] + qx(n)); // yy
2310 for (int p=0; p<npt; ++p, ++idx) {
2311 c[5] = cell(5,0) + h*cell_width[5]*(l[5] + qx(p)); // zz
2312 x1[idx] = c[0];
2313 x2[idx] = c[1];
2314 x3[idx] = c[2];
2315 x4[idx] = c[3];
2316 x5[idx] = c[4];
2317 x6[idx] = c[5];
2318 }
2319 }
2320 }
2321 }
2322 }
2323 }
2324 Vector<double*,6> xvals {x1, x2, x3, x4, x5, x6};
2325 f(xvals, fvptr, npt*npt*npt*npt*npt*npt);
2326 delete [] x1;
2327 delete [] x2;
2328 delete [] x3;
2329 delete [] x4;
2330 delete [] x5;
2331 delete [] x6;
2332 }
2333 else {
2334 MADNESS_EXCEPTION("FunctionImpl: fcube: confused about NDIM?",NDIM);
2335 }
2336 }
2337 else {
2338 if (NDIM == 1) {
2339 for (int i=0; i<npt; ++i) {
2340 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2341 fval(i) = f(c);
2342 MADNESS_ASSERT(!std::isnan(fval(i)));
2343 }
2344 }
2345 else if (NDIM == 2) {
2346 for (int i=0; i<npt; ++i) {
2347 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2348 for (int j=0; j<npt; ++j) {
2349 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2350 fval(i,j) = f(c);
2351 MADNESS_ASSERT(!std::isnan(fval(i,j)));
2352 }
2353 }
2354 }
2355 else if (NDIM == 3) {
2356 for (int i=0; i<npt; ++i) {
2357 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2358 for (int j=0; j<npt; ++j) {
2359 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2360 for (int k=0; k<npt; ++k) {
2361 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2362 fval(i,j,k) = f(c);
2363 MADNESS_ASSERT(!std::isnan(fval(i,j,k)));
2364 }
2365 }
2366 }
2367 }
2368 else if (NDIM == 4) {
2369 for (int i=0; i<npt; ++i) {
2370 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2371 for (int j=0; j<npt; ++j) {
2372 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2373 for (int k=0; k<npt; ++k) {
2374 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2375 for (int m=0; m<npt; ++m) {
2376 c[3] = cell(3,0) + h*cell_width[3]*(l[3] + qx(m)); // xx
2377 fval(i,j,k,m) = f(c);
2378 MADNESS_ASSERT(!std::isnan(fval(i,j,k,m)));
2379 }
2380 }
2381 }
2382 }
2383 }
2384 else if (NDIM == 5) {
2385 for (int i=0; i<npt; ++i) {
2386 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2387 for (int j=0; j<npt; ++j) {
2388 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2389 for (int k=0; k<npt; ++k) {
2390 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2391 for (int m=0; m<npt; ++m) {
2392 c[3] = cell(3,0) + h*cell_width[3]*(l[3] + qx(m)); // xx
2393 for (int n=0; n<npt; ++n) {
2394 c[4] = cell(4,0) + h*cell_width[4]*(l[4] + qx(n)); // yy
2395 fval(i,j,k,m,n) = f(c);
2396 MADNESS_ASSERT(!std::isnan(fval(i,j,k,m,n)));
2397 }
2398 }
2399 }
2400 }
2401 }
2402 }
2403 else if (NDIM == 6) {
2404 for (int i=0; i<npt; ++i) {
2405 c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
2406 for (int j=0; j<npt; ++j) {
2407 c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
2408 for (int k=0; k<npt; ++k) {
2409 c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
2410 for (int m=0; m<npt; ++m) {
2411 c[3] = cell(3,0) + h*cell_width[3]*(l[3] + qx(m)); // xx
2412 for (int n=0; n<npt; ++n) {
2413 c[4] = cell(4,0) + h*cell_width[4]*(l[4] + qx(n)); // yy
2414 for (int p=0; p<npt; ++p) {
2415 c[5] = cell(5,0) + h*cell_width[5]*(l[5] + qx(p)); // zz
2416 fval(i,j,k,m,n,p) = f(c);
2417 MADNESS_ASSERT(!std::isnan(fval(i,j,k,m,n,p)));
2418 }
2419 }
2420 }
2421 }
2422 }
2423 }
2424 }
2425 else {
2426 MADNESS_EXCEPTION("FunctionImpl: fcube: confused about NDIM?",NDIM);
2427 }
2428 }
2429 }
2430
2431 template <typename T, std::size_t NDIM>
2432 void FunctionImpl<T,NDIM>::fcube(const keyT& key, T (*f)(const coordT&), const Tensor<double>& qx, tensorT& fval) const {
2433 // fcube(key,typename FunctionFactory<T,NDIM>::FunctorInterfaceWrapper(f) , qx, fval);
2435 }
2436
2437 template <typename T, std::size_t NDIM>
2439 madness::fcube(key,f,qx,fval);
2440 }
2441
2442
2443 /// project the functor into this functionimpl, and "return" a tree in reconstructed,
2444 /// rank-reduced form.
2445
2446 /// @param[in] key current FunctionNode
2447 /// @param[in] do_refine
2448 /// @param[in] specialpts in case these are very spiky functions -- don't undersample
2449 template <typename T, std::size_t NDIM>
2451 bool do_refine,
2452 const std::vector<Vector<double,NDIM> >& specialpts) {
2453 //PROFILE_MEMBER_FUNC(FunctionImpl);
2454 if (do_refine && key.level() < max_refine_level) {
2455
2456 // Restrict special points to this box
2457 std::vector<Vector<double,NDIM> > newspecialpts;
2458 if (key.level() < special_level && specialpts.size() > 0) {
2460 const auto bperiodic = bc.is_periodic();
2461 for (unsigned int i = 0; i < specialpts.size(); ++i) {
2462 coordT simpt;
2463 user_to_sim(specialpts[i], simpt);
2464 Key<NDIM> specialkey = simpt2key(simpt, key.level());
2465 if (specialkey.is_neighbor_of(key,bperiodic)) {
2466 newspecialpts.push_back(specialpts[i]);
2467 }
2468 }
2469 }
2470
2471 // If refining compute scaling function coefficients and
2472 // norm of difference coefficients
2473 tensorT r, s0;
2474 double dnorm = 0.0;
2475 //////////////////////////if (newspecialpts.size() == 0)
2476 {
2477 // Make in r child scaling function coeffs at level n+1
2478 r = tensorT(cdata.v2k);
2479 for (KeyChildIterator<NDIM> it(key); it; ++it) {
2480 const keyT& child = it.key();
2481 r(child_patch(child)) = project(child);
2482 }
2483 // Filter then test difference coeffs at level n
2484 tensorT d = filter(r);
2485 if (truncate_on_project) s0 = copy(d(cdata.s0));
2486 d(cdata.s0) = T(0);
2487 dnorm = d.normf();
2488 }
2489
2490 // If have special points always refine. If don't have special points
2491 // refine if difference norm is big
2492 if (newspecialpts.size() > 0 || dnorm >=truncate_tol(thresh,key.level())) {
2493 coeffs.replace(key,nodeT(coeffT(),true)); // Insert empty node for parent
2494 for (KeyChildIterator<NDIM> it(key); it; ++it) {
2495 const keyT& child = it.key();
2496 ProcessID p;
2498 p = world.random_proc();
2499 }
2500 else {
2501 p = coeffs.owner(child);
2502 }
2503 //PROFILE_BLOCK(proj_refine_send); // Too fine grain for routine profiling
2504 woT::task(p, &implT::project_refine_op, child, do_refine, newspecialpts);
2505 }
2506 }
2507 else {
2508 if (truncate_on_project) {
2510 coeffs.replace(key,nodeT(s,false));
2511 }
2512 else {
2513 coeffs.replace(key,nodeT(coeffT(),true)); // Insert empty node for parent
2514 for (KeyChildIterator<NDIM> it(key); it; ++it) {
2515 const keyT& child = it.key();
2516 coeffT s(r(child_patch(child)),thresh,FunctionDefaults<NDIM>::get_tensor_type());
2517 coeffs.replace(child,nodeT(s,false));
2518 }
2519 }
2520 }
2521 }
2522 else {
2523 coeffs.replace(key,nodeT(coeffT(project(key),targs),false));
2524 }
2525 }
2526
2527 template <typename T, std::size_t NDIM>
2529 std::vector<long> v0(NDIM,0L);
2530 std::vector<long> v1(NDIM,1L);
2531 std::vector<Slice> s(NDIM,Slice(0,0));
2532 const TensorArgs full_args(-1.0,TT_FULL);
2533 if (is_compressed()) {
2534 if (world.rank() == coeffs.owner(cdata.key0)) {
2535 typename dcT::iterator it = coeffs.find(cdata.key0).get();
2536 MADNESS_ASSERT(it != coeffs.end());
2537 nodeT& node = it->second;
2538 MADNESS_ASSERT(node.has_coeff());
2539 // node.node_to_full_rank();
2540 // node.full_tensor_reference()(v0) += t*sqrt(FunctionDefaults<NDIM>::get_cell_volume());
2541 // node.node_to_low_rank();
2542 change_tensor_type(node.coeff(),full_args);
2544 change_tensor_type(node.coeff(),targs);
2545 }
2546 }
2547 else {
2548 for (typename dcT::iterator it=coeffs.begin(); it!=coeffs.end(); ++it) {
2549 Level n = it->first.level();
2550 nodeT& node = it->second;
2551 if (node.has_coeff()) {
2552 // this looks funny, but is necessary for GenTensor, since you can't access a
2553 // single matrix element. Therefore make a (1^NDIM) tensor, convert to GenTensor, then
2554 // add to the original one by adding a slice.
2555 tensorT ttt(v1);
2556 ttt=t*sqrt(FunctionDefaults<NDIM>::get_cell_volume()*pow(0.5,double(NDIM*n)));
2557 coeffT tt(ttt,get_tensor_args());
2558 node.coeff()(s) += tt;
2559 // this was the original line:
2560 // node.coeff().full_tensor()(v0) += t*sqrt(FunctionDefaults<NDIM>::get_cell_volume()*pow(0.5,double(NDIM*n)));
2561
2562 }
2563 }
2564 }
2565 if (fence) world.gop.fence();
2566 }
2567
2568 template <typename T, std::size_t NDIM>
2571 if (is_compressed()) initial_level = std::max(initial_level,1); // Otherwise zero function is confused
2572 if (coeffs.is_local(key)) {
2573 if (is_compressed()) {
2574 if (key.level() == initial_level) {
2575 coeffs.replace(key, nodeT(coeffT(), false));
2576 }
2577 else {
2578 coeffs.replace(key, nodeT(coeffT(cdata.v2k,targs), true));
2579 }
2580 }
2581 else {
2582 if (key.level()<initial_level) {
2583 coeffs.replace(key, nodeT(coeffT(), true));
2584 }
2585 else {
2586 coeffs.replace(key, nodeT(coeffT(cdata.vk,targs), false));
2587 }
2588 }
2589 }
2590 if (key.level() < initial_level) {
2591 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
2592 insert_zero_down_to_initial_level(kit.key());
2593 }
2594 }
2595
2596 }
2597
2598
2599 template <typename T, std::size_t NDIM>
2601 //PROFILE_MEMBER_FUNC(FunctionImpl);
2602 typename dcT::iterator it = coeffs.find(key).get();
2603 if (it == coeffs.end()) {
2604 // In a standard tree all children would exist but some ops (transform)
2605 // can leave the tree in a messy state. Just make the missing node as an
2606 // empty leaf.
2607 coeffs.replace(key,nodeT());
2608 it = coeffs.find(key).get();
2609 }
2610 nodeT& node = it->second;
2611 if (node.has_children()) {
2612 std::vector< Future<bool> > v = future_vector_factory<bool>(1<<NDIM);
2613 int i=0;
2614 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
2615 v[i] = woT::task(coeffs.owner(kit.key()), &implT::truncate_spawn, kit.key(), tol, TaskAttributes::generator());
2616 }
2617 return woT::task(world.rank(),&implT::truncate_op, key, tol, v);
2618 }
2619 else {
2620 // In compressed form leaves should not have coeffs ... however the
2621 // transform op could leave the tree with leaves that do have coeffs
2622 // in which case we want something sensible to happen
2623 //MADNESS_ASSERT(!node.has_coeff());
2624 if (node.has_coeff() && key.level()>1) {
2625 double dnorm = node.coeff().normf();
2626 if (dnorm < truncate_tol(tol,key)) {
2627 node.clear_coeff();
2628 }
2629 }
2630 return Future<bool>(node.has_coeff());
2631 }
2632 }
2633
2634
2635 template <typename T, std::size_t NDIM>
2636 bool FunctionImpl<T,NDIM>::truncate_op(const keyT& key, double tol, const std::vector< Future<bool> >& v) {
2637 //PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
2638 // If any child has coefficients, a parent cannot truncate
2639 for (int i=0; i<(1<<NDIM); ++i) if (v[i].get()) return true;
2640 nodeT& node = coeffs.find(key).get()->second;
2641
2642 // Interior nodes should always have coeffs but transform might
2643 // leave empty interior nodes ... hence just force no coeffs to
2644 // be zero coeff unless it is a leaf.
2645 if (node.has_children() && !node.has_coeff()) node.set_coeff(coeffT(cdata.v2k,targs));
2646
2647 if (key.level() > 1) { // >1 rather >0 otherwise reconstruct might get confused
2648 double dnorm = node.coeff().normf();
2649 if (dnorm < truncate_tol(tol,key)) {
2650 node.clear_coeff();
2651 if (node.has_children()) {
2652 node.set_has_children(false);
2653 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
2654 coeffs.erase(kit.key());
2655 }
2656 }
2657 }
2658 }
2659 return node.has_coeff();
2660 }
2661
2662
2663 template <typename T, std::size_t NDIM>
2664 void FunctionImpl<T,NDIM>::print_tree(std::ostream& os, Level maxlevel) const {
2665 if (world.rank() == 0) do_print_tree(cdata.key0, os, maxlevel);
2666 world.gop.fence();
2667 if (world.rank() == 0) os.flush();
2668 world.gop.fence();
2669 }
2670
2671
2672 template <typename T, std::size_t NDIM>
2673 void FunctionImpl<T,NDIM>::do_print_tree(const keyT& key, std::ostream& os, Level maxlevel) const {
2674 typename dcT::const_iterator it = coeffs.find(key).get();
2675 if (it == coeffs.end()) {
2676 //MADNESS_EXCEPTION("FunctionImpl: do_print_tree: null node pointer",0);
2677 for (int i=0; i<key.level(); ++i) os << " ";
2678 os << key << " missing --> " << coeffs.owner(key) << "\n";
2679 }
2680 else {
2681 const nodeT& node = it->second;
2682 for (int i=0; i<key.level(); ++i) os << " ";
2683 os << key << " " << node << " --> " << coeffs.owner(key) << "\n";
2684 if (key.level() < maxlevel && node.has_children()) {
2685 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
2686 do_print_tree(kit.key(),os,maxlevel);
2687 }
2688 }
2689 }
2690 }
2691
2692 template <typename T, std::size_t NDIM>
2693 void FunctionImpl<T,NDIM>::print_tree_json(std::ostream& os, Level maxlevel) const {
2694 std::multimap<Level, std::tuple<tranT, std::string>> data;
2695 if (world.rank() == 0) do_print_tree_json(cdata.key0, data, maxlevel);
2696 world.gop.fence();
2697 if (world.rank() == 0) {
2698 for (Level level = 0; level != maxlevel; ++level) {
2699 if (data.count(level) == 0)
2700 break;
2701 else {
2702 if (level > 0)
2703 os << ",";
2704 os << "\"" << level << "\":{";
2705 os << "\"level\": " << level << ",";
2706 os << "\"nodes\":{";
2707 auto range = data.equal_range(level);
2708 for (auto it = range.first; it != range.second; ++it) {
2709 os << "\"" << std::get<0>(it->second) << "\":"
2710 << std::get<1>(it->second);
2711 if (std::next(it) != range.second)
2712 os << ",";
2713 }
2714 os << "}}";
2715 }
2716 }
2717 os.flush();
2718 }
2719 world.gop.fence();
2720 }
2721
2722
2723 template <typename T, std::size_t NDIM>
2724 void FunctionImpl<T,NDIM>::do_print_tree_json(const keyT& key, std::multimap<Level, std::tuple<tranT, std::string>>& data, Level maxlevel) const {
2725 typename dcT::const_iterator it = coeffs.find(key).get();
2726 if (it == coeffs.end()) {
2727 MADNESS_EXCEPTION("FunctionImpl: do_print_tree_json: null node pointer",0);
2728 }
2729 else {
2730 const nodeT& node = it->second;
2731 std::ostringstream oss;
2732 oss << "{";
2733 node.print_json(oss);
2734 oss << ",\"owner\": " << coeffs.owner(key) << "}";
2735 auto node_json_str = oss.str();
2736 data.insert(std::make_pair(key.level(), std::make_tuple(key.translation(), node_json_str)));
2737 if (key.level() < maxlevel && node.has_children()) {
2738 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
2739 do_print_tree_json(kit.key(),data, maxlevel);
2740 }
2741 }
2742 }
2743 }
2744
2745 template <typename T, std::size_t NDIM>
2746 void FunctionImpl<T,NDIM>::print_tree_graphviz(std::ostream& os, Level maxlevel) const {
2747 // aggregate data by level, thus collect data first, then dump
2748 if (world.rank() == 0) do_print_tree_graphviz(cdata.key0, os, maxlevel);
2749 world.gop.fence();
2750 if (world.rank() == 0) os.flush();
2751 world.gop.fence();
2752 }
2753
2754 template <typename T, std::size_t NDIM>
2755 void FunctionImpl<T,NDIM>::do_print_tree_graphviz(const keyT& key, std::ostream& os, Level maxlevel) const {
2756
2757 struct uniqhash {
2758 static int64_t value(const keyT& key) {
2759 int64_t result = 0;
2760 for (int64_t j = 0; j <= key.level()-1; ++j) {
2761 result += (1 << j*NDIM);
2762 }
2763 result += key.translation()[0];
2764 return result;
2765 }
2766 };
2767
2768 typename dcT::const_iterator it = coeffs.find(key).get();
2769 if (it != coeffs.end()) {
2770 const nodeT& node = it->second;
2771 if (key.level() < maxlevel && node.has_children()) {
2772 for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
2773 os << uniqhash::value(key) << " -> " << uniqhash::value(kit.key()) << "\n";
2774 do_print_tree_graphviz(kit.key(),os,maxlevel);
2775 }
2776 }
2777 }
2778 }
2779
2780 template <typename T, std::size_t NDIM>
2782 //PROFILE_MEMBER_FUNC(FunctionImpl);
2783
2784 if (not functor) MADNESS_EXCEPTION("FunctionImpl: project: confusion about function?",0);
2785
2786 // if functor provides coeffs directly, awesome; otherwise use compute by yourself
2787 if (functor->provides_coeff()) return functor->coeff(key).full_tensor_copy();
2788
2789 MADNESS_ASSERT(cdata.npt == cdata.k); // only necessary due to use of fast transform
2790 tensorT fval(cdata.vq,false); // this will be the returned result
2791 tensorT work(cdata.vk,false); // initially evaluate the function in here
2792 tensorT workq(cdata.vq,false); // initially evaluate the function in here
2793
2794 // compute the values of the functor at the quadrature points and scale appropriately
2795 madness::fcube(key,*functor,cdata.quad_x,work);
2796 work.scale(sqrt(FunctionDefaults<NDIM>::get_cell_volume()*pow(0.5,double(NDIM*key.level()))));
2797 //return transform(work,cdata.quad_phiw);
2798 return fast_transform(work,cdata.quad_phiw,fval,workq);
2799 }
2800
2801 template <typename T, std::size_t NDIM>
2803 if (coeffs.probe(key)) {
2804 return Future<double>(coeffs.find(key).get()->second.get_norm_tree());
2805 }
2806 MADNESS_ASSERT(key.level());
2807 keyT parent = key.parent();
2808 return woT::task(coeffs.owner(parent), &implT::get_norm_tree_recursive, parent, TaskAttributes::hipri());
2809 }
2810
2811
2812 template <typename T, std::size_t NDIM>
2814 const RemoteReference< FutureImpl< std::pair<keyT,coeffT> > >& ref) const {
2815 //PROFILE_MEMBER_FUNC(FunctionImpl);
2816 if (coeffs.probe(key)) {
2817 const nodeT& node = coeffs.find(key).get()->second;
2818 Future< std::pair<keyT,coeffT> > result(ref);
2819 if (node.has_coeff()) {
2820 //madness::print("sock found it with coeff",key);
2821 result.set(std::pair<keyT,coeffT>(key,node.coeff()));
2822 }
2823 else {
2824 //madness::print("sock found it without coeff",key);
2825 result.set(std::pair<keyT,coeffT>(key,coeffT()));
2826 }
2827 }
2828 else {
2829 keyT parent = key.parent();
2830 //madness::print("sock forwarding to parent",key,parent);
2831 //PROFILE_BLOCK(sitome_send); // Too fine grain for routine profiling
2832 if (coeffs.is_local(parent))
2833 woT::send(coeffs.owner(parent), &FunctionImpl<T,NDIM>::sock_it_to_me, parent, ref);
2834 else
2835 woT::task(coeffs.owner(parent), &FunctionImpl<T,NDIM>::sock_it_to_me, parent, ref, TaskAttributes::hipri());
2836 }
2837 }
2838
2839 // like sock_it_to_me, but it replaces empty node with averaged coeffs from further down the tree
2840 template <typename T, std::size_t NDIM>
2842 const RemoteReference< FutureImpl< std::pair<keyT,coeffT> > >& ref) const {
2844 if (coeffs.probe(key)) {
2845 const nodeT& node = coeffs.find(key).get()->second;
2846 Future< std::pair<keyT,coeffT> > result(ref);
2847 if (node.has_coeff()) {
2848 result.set(std::pair<keyT,coeffT>(key,node.coeff()));
2849 }
2850 else {
2851 result.set(std::pair<keyT,coeffT>(key,nodeT(coeffT(project(key),targs),false).coeff()));
2852 }
2853 }
2854 else {
2855 keyT parent = key.parent();
2856 //PROFILE_BLOCK(sitome2_send); // Too fine grain for routine profiling
2857 woT::task(coeffs.owner(parent), &FunctionImpl<T,NDIM>::sock_it_to_me_too, parent, ref, TaskAttributes::hipri());
2858 }
2859 }
2860
2861
2862 template <typename T, std::size_t NDIM>
2864 const keyT& keyin,
2865 const typename Future<T>::remote_refT& ref) {
2866
2868 // This is ugly. We must figure out a clean way to use
2869 // owner computes rule from the container.
2870 Vector<double,NDIM> x = xin;
2871 keyT key = keyin;
2873 ProcessID me = world.rank();
2874 while (1) {
2875 ProcessID owner = coeffs.owner(key);
2876 if (owner != me) {
2877 //PROFILE_BLOCK(eval_send); // Too fine grain for routine profiling
2878 woT::task(owner, &implT::eval, x, key, ref, TaskAttributes::hipri());
2879 return;
2880 }
2881 else {
2882 typename dcT::futureT fut = coeffs.find(key);
2883 typename dcT::iterator it = fut.get();
2884 nodeT& node = it->second;
2885 if (node.has_coeff()) {
2886 Future<T>(ref).set(eval_cube(key.level(), x, node.coeff().full_tensor_copy()));
2887 return;
2888 }
2889 else {
2890 for (std::size_t i=0; i<NDIM; ++i) {
2891 double xi = x[i]*2.0;
2892 int li = int(xi);
2893 if (li == 2) li = 1;
2894 x[i] = xi - li;
2895 l[i] = 2*l[i] + li;
2896 }
2897 key = keyT(key.level()+1,l);
2898 }
2899 }
2900 }
2901 //MADNESS_EXCEPTION("should not be here",0);
2902 }
2903
2904
2905 template <typename T, std::size_t NDIM>
2906 std::pair<bool,T>
2908 Vector<double,NDIM> x = xin;
2909 keyT key(0);
2911 const ProcessID me = world.rank();
2912 while (key.level() <= maxlevel) {
2913 if (coeffs.owner(key) == me) {
2914 typename dcT::futureT fut = coeffs.find(key);
2915 typename dcT::iterator it = fut.get();
2916 if (it != coeffs.end()) {
2917 nodeT& node = it->second;
2918 if (node.has_coeff()) {
2919 return std::pair<bool,T>(true,eval_cube(key.level(), x, node.coeff().full_tensor_copy()));
2920 }
2921 }
2922 }
2923 for (std::size_t i=0; i<NDIM; ++i) {
2924 double xi = x[i]*2.0;
2925 int li = int(xi);
2926 if (li == 2) li = 1;
2927 x[i] = xi - li;
2928 l[i] = 2*l[i] + li;
2929 }
2930 key = keyT(key.level()+1,l);
2931 }
2932 return std::pair<bool,T>(false,0.0);
2933 }
2934
2935 template <typename T, std::size_t NDIM>
2937 const keyT& keyin,
2938 const typename Future<Level>::remote_refT& ref) {
2939
2941 // This is ugly. We must figure out a clean way to use
2942 // owner computes rule from the container.
2943 Vector<double,NDIM> x = xin;
2944 keyT key = keyin;
2946 ProcessID me = world.rank();
2947 while (1) {
2948 ProcessID owner = coeffs.owner(key);
2949 if (owner != me) {
2950 //PROFILE_BLOCK(eval_send); // Too fine grain for routine profiling
2951 woT::task(owner, &implT::evaldepthpt, x, key, ref, TaskAttributes::hipri());
2952 return;
2953 }
2954 else {
2955 typename dcT::futureT fut = coeffs.find(key);
2956 typename dcT::iterator it = fut.get();
2957 nodeT& node = it->second;
2958 if (node.has_coeff()) {
2959 Future<Level>(ref).set(key.level());
2960 return;
2961 }
2962 else {
2963 for (std::size_t i=0; i<NDIM; ++i) {
2964 double xi = x[i]*2.0;
2965 int li = int(xi);
2966 if (li == 2) li = 1;
2967 x[i] = xi - li;
2968 l[i] = 2*l[i] + li;
2969 }
2970 key = keyT(key.level()+1,l);
2971 }
2972 }
2973 }
2974 //MADNESS_EXCEPTION("should not be here",0);
2975 }
2976
2977 template <typename T, std::size_t NDIM>
2979 const keyT& keyin,
2980 const typename Future<long>::remote_refT& ref) {
2981
2983 // This is ugly. We must figure out a clean way to use
2984 // owner computes rule from the container.
2985 Vector<double,NDIM> x = xin;
2986 keyT key = keyin;
2988 ProcessID me = world.rank();
2989 while (1) {
2990 ProcessID owner = coeffs.owner(key);
2991 if (owner != me) {
2992 //PROFILE_BLOCK(eval_send); // Too fine grain for routine profiling
2993 woT::task(owner, &implT::evalR, x, key, ref, TaskAttributes::hipri());
2994 return;
2995 }
2996 else {
2997 typename dcT::futureT fut = coeffs.find(key);
2998 typename dcT::iterator it = fut.get();
2999 nodeT& node = it->second;
3000 if (node.has_coeff()) {
3001 Future<long>(ref).set(node.coeff().rank());
3002 return;
3003 }
3004 else {
3005 for (std::size_t i=0; i<NDIM; ++i) {
3006 double xi = x[i]*2.0;
3007 int li = int(xi);
3008 if (li == 2) li = 1;
3009 x[i] = xi - li;
3010 l[i] = 2*l[i] + li;
3011 }
3012 key = keyT(key.level()+1,l);
3013 }
3014 }
3015 }
3016 //MADNESS_EXCEPTION("should not be here",0);
3017 }
3018
3019
3020 template <typename T, std::size_t NDIM>
3021 void FunctionImpl<T,NDIM>::tnorm(const tensorT& t, double* lo, double* hi) {
3022 //PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
3023 auto& cdata=FunctionCommonData<T,NDIM>::get(t.dim(0));
3024 tensorT work = copy(t);
3025 tensorT tlo = work(cdata.sh);
3026 *lo = tlo.normf();
3027 tlo.fill(0.0);
3028 *hi = work.normf();
3029 }
3030
3031 template <typename T, std::size_t NDIM>
3032 void FunctionImpl<T,NDIM>::tnorm(const GenTensor<T>& t, double* lo, double* hi) {
3033 auto& cdata=FunctionCommonData<T,NDIM>::get(t.dim(0));
3034 coeffT shalf=t(cdata.sh);
3035 *lo=shalf.normf();
3036 coeffT sfull=copy(t);
3037 sfull(cdata.sh)-=shalf;
3038 *hi=sfull.normf();
3039 }
3040
3041 template <typename T, std::size_t NDIM>
3042 void FunctionImpl<T,NDIM>::tnorm(const SVDTensor<T>& t, double* lo, double* hi,
3043 const int particle) {
3044 *lo=0.0;
3045 *hi=0.0;
3046 auto& cdata=FunctionCommonData<T,NDIM>::get(t.dim(0));
3047 if (t.rank()==0) return;
3048 const tensorT vec=t.flat_vector(particle-1);
3049 for (long i=0; i<t.rank(); ++i) {
3050 double lo1,hi1;
3051 tensorT c=vec(Slice(i,i),_).reshape(cdata.vk);
3052 tnorm(c, &lo1, &hi1); // note we use g instead of h, since g is 3D
3053 *lo+=lo1*t.weights(i);
3054 *hi+=hi1*t.weights(i);
3055 }
3056 }
3057
3058
3059 namespace detail {
3060 template <typename A, typename B>
3061 struct noop {
3062 void operator()(const A& a, const B& b) const {};
3063
3064 template <typename Archive> void serialize(Archive& ar) {}
3065 };
3066
3067 template <typename T, std::size_t NDIM>
3071 // G++ 4.1.2 ICEs on BGP ... scaleinplace(T q) : q(q) {}
3072 scaleinplace(T q) {this->q = q;}
3073 void operator()(const Key<NDIM>& key, Tensor<T>& t) const {
3074 t.scale(q);
3075 }
3076 void operator()(const Key<NDIM>& key, FunctionNode<T,NDIM>& node) const {
3077 node.coeff().scale(q);
3078 }
3079 template <typename Archive> void serialize(Archive& ar) {
3080 ar & q;
3081 }
3082 };
3083
3084 template <typename T, std::size_t NDIM>
3086 void operator()(const Key<NDIM>& key, Tensor<T>& t) const {
3087 t.emul(t);
3088 }
3089 template <typename Archive> void serialize(Archive& ar) {}
3090 };
3091
3092 template <typename T, std::size_t NDIM>
3093 struct absinplace {
3094 void operator()(const Key<NDIM>& key, Tensor<T>& t) const {t=abs(t);}
3095 template <typename Archive> void serialize(Archive& ar) {}
3096 };
3097
3098 template <typename T, std::size_t NDIM>
3100 void operator()(const Key<NDIM>& key, Tensor<T>& t) const {abs(t.emul(t));}
3101 template <typename Archive> void serialize(Archive& ar) {}
3102 };
3103
3104 }
3105
3106template <typename T, std::size_t NDIM>
3107 void FunctionImpl<T,NDIM>::scale_inplace(const T q, bool fence) {
3108 // unary_op_coeff_inplace(detail::scaleinplace<T,NDIM>(q), fence);
3109 unary_op_node_inplace(detail::scaleinplace<T,NDIM>(q), fence);
3110 }
3111
3112 template <typename T, std::size_t NDIM>
3114 //unary_op_value_inplace(&implT::autorefine_square_test, detail::squareinplace<T,NDIM>(), fence);
3115 unary_op_value_inplace(detail::squareinplace<T,NDIM>(), fence);
3116 }
3117
3118 template <typename T, std::size_t NDIM>
3120 unary_op_value_inplace(detail::absinplace<T,NDIM>(), fence);
3121 }
3122
3123 template <typename T, std::size_t NDIM>
3125 unary_op_value_inplace(detail::abssquareinplace<T,NDIM>(), fence);
3126 }
3127
3128 template <typename T, std::size_t NDIM>
3130 //PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
3131 double p[200];
3132 double scale = pow(2.0,double(np-nc));
3133 for (int mu=0; mu<cdata.npt; ++mu) {
3134 double xmu = scale*(cdata.quad_x(mu)+lc) - lp;
3135 MADNESS_ASSERT(xmu>-1e-15 && xmu<(1+1e-15));
3136 legendre_scaling_functions(xmu,cdata.k,p);
3137 for (int i=0; i<k; ++i) phi(i,mu) = p[i];
3138 }
3139 phi.scale(pow(2.0,0.5*np));
3140 }
3141
3142 template <typename T, std::size_t NDIM>
3143
3144 const GenTensor<T> FunctionImpl<T,NDIM>::parent_to_child(const coeffT& s, const keyT& parent, const keyT& child) const {
3145 //PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
3146 // An invalid parent/child means that they are out of the box
3147 // and it is the responsibility of the caller to worry about that
3148 // ... most likely the coefficients (s) are zero to reflect
3149 // zero B.C. so returning s makes handling this easy.
3150 if (parent == child || parent.is_invalid() || child.is_invalid()) return s;
3151
3152 coeffT result = fcube_for_mul<T>(child, parent, s);
3153 result.scale(sqrt(FunctionDefaults<NDIM>::get_cell_volume()*pow(0.5,double(NDIM*child.level()))));
3154 result = transform(result,cdata.quad_phiw);
3155
3156 return result;
3157 }
3158
3159
3160 template <typename T, std::size_t NDIM>
3163 std::vector<long> v0(NDIM,0);
3164 T sum = 0.0;
3165 if (is_compressed()) {
3166 if (world.rank() == coeffs.owner(cdata.key0)) {
3167 typename dcT::const_iterator it = coeffs.find(cdata.key0).get();
3168 if (it != coeffs.end()) {
3169 const nodeT& node = it->second;
3170 if (node.has_coeff()) sum = node.coeff().full_tensor_copy()(v0);
3171 }
3172 }
3173 }
3174 else {
3175 for (typename dcT::const_iterator it=coeffs.begin(); it!=coeffs.end(); ++it) {
3176 const keyT& key = it->first;
3177 const nodeT& node = it->second;
3178 if (node.has_coeff()) sum += node.coeff().full_tensor_copy()(v0)*pow(0.5,NDIM*key.level()*0.5);
3179 }
3180 }
3182 }
3183
3184
3185 static inline bool enforce_bc(bool is_periodic, Level n, Translation& l) {
3186 const Translation two2n = 1ul << n;
3187 if (l < 0) {
3188 if (is_periodic) {
3189 do {
3190 l += two2n; // Periodic BC
3191 } while (l < 0);
3192 } else
3193 return false; // Zero BC
3194 } else if (l >= two2n) {
3195 if (is_periodic) {
3196 do {
3197 l -= two2n; // Periodic BC
3198 } while (l >= two2n);
3199 } else
3200 return false; // Zero BC
3201 }
3202 return true;
3203 }
3204
3205 static inline bool enforce_in_volume(Level n, const Translation& l) {
3206 Translation two2n = 1ul << n;
3207 return l >= 0 && l < two2n;
3208 }
3209
3210 template <typename T, std::size_t NDIM>
3211 Key<NDIM> FunctionImpl<T,NDIM>::neighbor(const keyT& key, const Key<NDIM>& disp, const array_of_bools<NDIM>& is_periodic) const {
3213
3214 for (std::size_t axis=0; axis<NDIM; ++axis) {
3215 l[axis] += disp.translation()[axis];
3216
3217 //if (!enforce_bc(bc(axis,0), bc(axis,1), key.level(), l[axis])) {
3218 if (!enforce_bc(is_periodic[axis], key.level(), l[axis])) {
3219 return keyT::invalid();
3220 }
3221 }
3222 return keyT(key.level(),l);
3223 }
3224
3225 template <typename T, std::size_t NDIM>
3228
3229 for (std::size_t axis = 0; axis < NDIM; ++axis) {
3230 l[axis] += disp.translation()[axis];
3231
3232 if (!enforce_in_volume(key.level(), l[axis])) {
3233 return keyT::invalid();
3234 }
3235 }
3236 return keyT(key.level(), l);
3237 }
3238
3239 template <typename T, std::size_t NDIM>
3242 //PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
3243 typedef std::pair< Key<NDIM>,coeffT > argT;
3244 Future<argT> result;
3245 //PROFILE_BLOCK(find_me_send); // Too fine grain for routine profiling
3246 woT::task(coeffs.owner(key), &implT::sock_it_to_me_too, key, result.remote_ref(world), TaskAttributes::hipri());
3247 return result;
3248 }
3250
3251 /// will insert
3252 /// @return s coefficient and norm_tree for key
3253 template <typename T, std::size_t NDIM>
3255 bool nonstandard1, bool keepleaves, bool redundant1) {
3256 if (!coeffs.probe(key)) print("missing node",key);
3257 MADNESS_ASSERT(coeffs.probe(key));
3259 // get fetches remote data (here actually local)
3260 nodeT& node = coeffs.find(key).get()->second;
3261
3262 // internal node -> continue recursion
3263 if (node.has_children()) {
3264 std::vector< Future<std::pair<coeffT,double> > > v = future_vector_factory<std::pair<coeffT,double> >(1<<NDIM);
3265 int i=0;
3266 for (KeyChildIterator<NDIM> kit(key); kit; ++kit,++i) {
3267 //PROFILE_BLOCK(compress_send); // Too fine grain for routine profiling
3268 // readily available
3269 v[i] = woT::task(coeffs.owner(kit.key()), &implT::compress_spawn, kit.key(),
3270 nonstandard1, keepleaves, redundant1, TaskAttributes::hipri());
3271 }
3272 if (redundant1) return woT::task(world.rank(),&implT::make_redundant_op, key, v);
3273 return woT::task(world.rank(),&implT::compress_op, key, v, nonstandard1);
3274 }
3275
3276 // leaf node -> remove coefficients here and pass them back to parent for filtering
3277 // insert snorm, dnorm=0.0, normtree (=snorm)
3278 else {
3279 // special case: tree has only root node: keep sum coeffs and make zero diff coeffs
3280 if (key.level()==0) {
3281 if (redundant1) {
3282 // with only the root node existing redundant and reconstructed are the same
3283 coeffT result(node.coeff());
3284 double snorm=node.coeff().normf();
3285 node.set_dnorm(0.0);
3286 node.set_snorm(snorm);
3287 node.set_norm_tree(snorm);
3288 return Future< std::pair<GenTensor<T>,double> >(std::make_pair(result,snorm));
3289 } else {
3290 // compress
3291 coeffT result(node.coeff());
3292 coeffT sdcoeff(cdata.v2k,this->get_tensor_type());
3293 sdcoeff(cdata.s0)+=node.coeff();
3294 node.coeff()=sdcoeff;
3295 double snorm=node.coeff().normf();
3296 node.set_dnorm(0.0);
3297 node.set_snorm(snorm);
3298 node.set_norm_tree(snorm);
3299 return Future< std::pair<GenTensor<T>,double> >(std::make_pair(result,node.coeff().normf()));
3300 }
3301
3302 } else { // this is a leaf node
3303 Future<coeffT > result(node.coeff());
3304 if (not keepleaves) node.clear_coeff();
3305
3306 auto snorm=(keepleaves) ? node.coeff().normf() : 0.0;
3307 node.set_norm_tree(snorm);
3308 node.set_snorm(snorm);
3309 node.set_dnorm(0.0);
3310
3311 return Future< std::pair<GenTensor<T>,double> >(std::make_pair(result,snorm));
3312 }
3313 }
3314 }
3315
3316 template <typename T, std::size_t NDIM>
3318 const keyT& key,
3319 const coordT& plotlo, const coordT& plothi, const std::vector<long>& npt,
3320 bool eval_refine) const {
3321
3322 Tensor<T>& r = *ptr;
3323
3324 coordT h; // Increment between points in each dimension
3325 for (std::size_t i=0; i<NDIM; ++i) {
3326 if (npt[i] > 1) {
3327 h[i] = (plothi[i]-plotlo[i])/(npt[i]-1);
3328 }
3329 else {
3330 MADNESS_ASSERT(plotlo[i] == plothi[i]);
3331 h[i] = 0.0;
3332 }
3333 }
3334
3335 const Level n = key.level();
3336 const Vector<Translation,NDIM>& l = key.translation();
3337 const double twon = pow(2.0,double(n));
3338 const tensorT& coeff = coeffs.find(key).get()->second.coeff().full_tensor_copy(); // Ugh!
3339 // const tensorT coeff = coeffs.find(key).get()->second.full_tensor_copy(); // Ugh!
3340 long ind[NDIM];
3341 coordT x;
3342
3343 coordT boxlo, boxhi;
3344 Vector<int,NDIM> boxnpt;
3345 double fac = pow(0.5,double(key.level()));
3346 int npttotal = 1;
3347 for (std::size_t d=0; d<NDIM; ++d) {
3348 // Coords of box
3349 boxlo[d] = fac*key.translation()[d];
3350 boxhi[d] = boxlo[d]+fac;
3351
3352 if (boxlo[d] > plothi[d] || boxhi[d] < plotlo[d]) {
3353 // Discard boxes out of the plot range
3354 npttotal = boxnpt[d] = 0;
3355 //print("OO range?");
3356 break;
3357 }
3358 else if (npt[d] == 1) {
3359 // This dimension is only a single point
3360 boxlo[d] = boxhi[d] = plotlo[d];
3361 boxnpt[d] = 1;
3362 }
3363 else {
3364 // Restrict to plot range
3365 boxlo[d] = std::max(boxlo[d],plotlo[d]);
3366 boxhi[d] = std::min(boxhi[d],plothi[d]);
3367
3368 // Round lo up to next plot point; round hi down
3369 double xlo = long((boxlo[d]-plotlo[d])/h[d])*h[d] + plotlo[d];
3370 if (xlo < boxlo[d]) xlo += h[d];
3371 boxlo[d] = xlo;
3372 double xhi = long((boxhi[d]-plotlo[d])/h[d])*h[d] + plotlo[d];
3373 if (xhi > boxhi[d]) xhi -= h[d];
3374 // MADNESS_ASSERT(xhi >= xlo); // nope
3375 boxhi[d] = xhi;
3376 boxnpt[d] = long(round((boxhi[d] - boxlo[d])/h[d])) + 1;
3377 }
3378 npttotal *= boxnpt[d];
3379 }
3380 //print(" box", boxlo, boxhi, boxnpt, npttotal);
3381 if (npttotal > 0) {
3382 for (IndexIterator it(boxnpt); it; ++it) {
3383 for (std::size_t d=0; d<NDIM; ++d) {
3384 double xd = boxlo[d] + it[d]*h[d]; // Sim. coords of point
3385 x[d] = twon*xd - l[d]; // Offset within box
3386 MADNESS_ASSERT(x[d]>=0.0 && x[d] <=1.0); // sanity
3387 if (npt[d] > 1) {
3388 ind[d] = long(round((xd-plotlo[d])/h[d])); // Index of plot point
3390 else {
3391 ind[d] = 0;
3393 MADNESS_ASSERT(ind[d]>=0 && ind[d]<npt[d]); // sanity
3394 }
3395 if (eval_refine) {
3396 r(ind) = n;
3397 }
3398 else {
3399 T tmp = eval_cube(n, x, coeff);
3400 r(ind) = tmp;
3401 //print(" eval", ind, tmp, r(ind));
3402 }
3404 }
3405 }
3407 /// Set plot_refine=true to get a plot of the refinment levels of
3408 /// the given function (defaulted to false in prototype).
3409 template <typename T, std::size_t NDIM>
3411 const coordT& plothi,
3412 const std::vector<long>& npt,
3413 const bool eval_refine) const {
3415 Tensor<T> r(NDIM, &npt[0]);
3416 //r(___) = 99.0;
3417 MADNESS_ASSERT(is_reconstructed());
3418
3419 for (typename dcT::const_iterator it=coeffs.begin(); it!=coeffs.end(); ++it) {
3420 const keyT& key = it->first;
3421 const nodeT& node = it->second;
3422 if (node.has_coeff()) {
3423 woT::task(world.rank(), &implT::plot_cube_kernel,
3424 archive::archive_ptr< Tensor<T> >(&r), key, plotlo, plothi, npt, eval_refine);
3425 }
3426 }
3427
3428 // ITERATOR(r, if (r(IND) == 99.0) {print("BAD", IND); error("bad",0);});
3429
3430 world.taskq.fence();
3431 world.gop.sum(r.ptr(), r.size());
3432 world.gop.fence();
3433
3434 return r;
3435 }
3436
3437 static inline void dxprintvalue(FILE* f, const double t) {
3438 fprintf(f,"%.6e\n",t);
3439 }
3440
3441 static inline void dxprintvalue(FILE* f, const double_complex& t) {
3442 fprintf(f,"%.6e %.6e\n", t.real(), t.imag());
3443 }
3444
3445 template <typename T, std::size_t NDIM>
3447 const char* filename,
3448 const Tensor<double>& cell,
3449 const std::vector<long>& npt,
3450 bool binary) {
3452 MADNESS_ASSERT(NDIM<=6);
3453 const char* element[6] = {"lines","quads","cubes","cubes4D","cubes5D","cubes6D"};
3454
3455 function.verify();
3456 World& world = const_cast< Function<T,NDIM>& >(function).world();
3457 FILE *f=0;
3458 if (world.rank() == 0) {
3459 f = fopen(filename, "w");
3460 if (!f) MADNESS_EXCEPTION("plotdx: failed to open the plot file", 0);
3461
3462 fprintf(f,"object 1 class gridpositions counts ");
3463 for (std::size_t d=0; d<NDIM; ++d) fprintf(f," %ld",npt[d]);
3464 fprintf(f,"\n");
3465
3466 fprintf(f,"origin ");
3467 for (std::size_t d=0; d<NDIM; ++d) fprintf(f, " %.6e", cell(d,0));
3468 fprintf(f,"\n");
3469
3470 for (std::size_t d=0; d<NDIM; ++d) {
3471 fprintf(f,"delta ");
3472 for (std::size_t c=0; c<d; ++c) fprintf(f, " 0");
3473 double h = 0.0;
3474 if (npt[d]>1) h = (cell(d,1)-cell(d,0))/(npt[d]-1);
3475 fprintf(f," %.6e", h);
3476 for (std::size_t c=d+1; c<NDIM; ++c) fprintf(f, " 0");
3477 fprintf(f,"\n");
3478 }
3479 fprintf(f,"\n");
3480
3481 fprintf(f,"object 2 class gridconnections counts ");
3482 for (std::size_t d=0; d<NDIM; ++d) fprintf(f," %ld",npt[d]);
3483 fprintf(f,"\n");
3484 fprintf(f, "attribute \"element type\" string \"%s\"\n", element[NDIM-1]);
3485 fprintf(f, "attribute \"ref\" string \"positions\"\n");
3486 fprintf(f,"\n");
3487
3488 int npoint = 1;
3489 for (std::size_t d=0; d<NDIM; ++d) npoint *= npt[d];
3490 const char* iscomplex = "";
3491 if (TensorTypeData<T>::iscomplex) iscomplex = "category complex";
3492 const char* isbinary = "";
3493 if (binary) isbinary = "binary";
3494 fprintf(f,"object 3 class array type double %s rank 0 items %d %s data follows\n",
3495 iscomplex, npoint, isbinary);
3496 }
3497
3498 world.gop.fence();
3499 Tensor<T> r = function.eval_cube(cell, npt);
3500
3501 if (world.rank() == 0) {
3502 if (binary) {
3503 // This assumes that the values are double precision
3504 fflush(f);
3505 fwrite((void *) r.ptr(), sizeof(T), r.size(), f);
3506 fflush(f);
3507 }
3508 else {
3509 for (IndexIterator it(npt); it; ++it) {
3510 //fprintf(f,"%.6e\n",r(*it));
3511 dxprintvalue(f,r(*it));
3512 }
3513 }
3514 fprintf(f,"\n");
3515
3516 fprintf(f,"object \"%s\" class field\n",filename);
3517 fprintf(f,"component \"positions\" value 1\n");
3518 fprintf(f,"component \"connections\" value 2\n");
3519 fprintf(f,"component \"data\" value 3\n");
3520 fprintf(f,"\nend\n");
3521 fclose(f);
3522 }
3523 world.gop.fence();
3524 }
3525
3526 template <std::size_t NDIM>
3528 k = 6;
3529 thresh = 1e-4;
3530 initial_level = 2;
3531 special_level = 3;
3532 max_refine_level = 30;
3533 truncate_mode = 0;
3534 refine = true;
3535 autorefine = true;
3536 debug = false;
3537 truncate_on_project = true;
3538 apply_randomize = false;
3539 project_randomize = false;
3540 if (!bc.has_value()) bc = BoundaryConditions<NDIM>(BC_FREE);
3541 tt = TT_FULL;
3542 cell = make_default_cell();
3543 recompute_cell_info();
3544 set_default_pmap(world);
3545 }
3546
3547 template <std::size_t NDIM>
3549 //pmap = std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >(new WorldDCDefaultPmap< Key<NDIM> >(world));
3550 pmap = std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >(new madness::LevelPmap< Key<NDIM> >(world));
3551 //pmap = std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >(new SimplePmap< Key<NDIM> >(world));
3552 }
3553
3554
3555 template <std::size_t NDIM>
3557 std::cout << "Function Defaults:" << std::endl;
3558 std::cout << " Dimension " << ": " << NDIM << std::endl;
3559 std::cout << " k" << ": " << k << std::endl;
3560 std::cout << " thresh" << ": " << thresh << std::endl;
3561 std::cout << " initial_level" << ": " << initial_level << std::endl;
3562 std::cout << " special_level" << ": " << special_level << std::endl;
3563 std::cout << " max_refine_level" << ": " << max_refine_level << std::endl;
3564 std::cout << " truncate_mode" << ": " << truncate_mode << std::endl;
3565 std::cout << " refine" << ": " << refine << std::endl;
3566 std::cout << " autorefine" << ": " << autorefine << std::endl;
3567 std::cout << " debug" << ": " << debug << std::endl;
3568 std::cout << " truncate_on_project" << ": " << truncate_on_project << std::endl;
3569 std::cout << " apply_randomize" << ": " << apply_randomize << std::endl;
3570 std::cout << " project_randomize" << ": " << project_randomize << std::endl;
3571 std::cout << " bc" << ": " << get_bc() << std::endl;
3572 std::cout << " tt" << ": " << tt << std::endl;
3573 std::cout << " cell" << ": " << cell << std::endl;
3574 }
3575
3576 template <typename T, std::size_t NDIM>
3577 const FunctionCommonData<T,NDIM>* FunctionCommonData<T,NDIM>::data[MAXK] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
3578
3579 // default values match those in FunctionDefaults::set_defaults(world)
3580 template <std::size_t NDIM> int FunctionDefaults<NDIM>::k = 6;
3581 template <std::size_t NDIM> double FunctionDefaults<NDIM>::thresh = 1e-4;
3582 template <std::size_t NDIM> int FunctionDefaults<NDIM>::initial_level = 2;
3583 template <std::size_t NDIM> int FunctionDefaults<NDIM>::special_level = 3;
3584 template <std::size_t NDIM> int FunctionDefaults<NDIM>::max_refine_level = 30;
3585 template <std::size_t NDIM> int FunctionDefaults<NDIM>::truncate_mode = 0;
3586 template <std::size_t NDIM> bool FunctionDefaults<NDIM>::refine = true;
3587 template <std::size_t NDIM> bool FunctionDefaults<NDIM>::autorefine = true;
3588 template <std::size_t NDIM> bool FunctionDefaults<NDIM>::debug = false;
3589 template <std::size_t NDIM> bool FunctionDefaults<NDIM>::truncate_on_project = true;
3590 template <std::size_t NDIM> bool FunctionDefaults<NDIM>::apply_randomize = false;
3591 template <std::size_t NDIM> bool FunctionDefaults<NDIM>::project_randomize = false;
3592 template <std::size_t NDIM> std::optional<BoundaryConditions<NDIM>> FunctionDefaults<NDIM>::bc;
3593 template <std::size_t NDIM> TensorType FunctionDefaults<NDIM>::tt = TT_FULL;
3594 template <std::size_t NDIM> Tensor<double> FunctionDefaults<NDIM>::cell = FunctionDefaults<NDIM>::make_default_cell();
3595 template <std::size_t NDIM> Tensor<double> FunctionDefaults<NDIM>::cell_width = FunctionDefaults<NDIM>::make_default_cell_width();
3596 template <std::size_t NDIM> Tensor<double> FunctionDefaults<NDIM>::rcell_width = FunctionDefaults<NDIM>::make_default_cell_width();
3597 template <std::size_t NDIM> double FunctionDefaults<NDIM>::cell_volume = 1.;
3598 template <std::size_t NDIM> double FunctionDefaults<NDIM>::cell_min_width = 1.;
3599 template <std::size_t NDIM> std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > > FunctionDefaults<NDIM>::pmap;
3600
3601 template <std::size_t NDIM> std::vector< Key<NDIM> > Displacements<NDIM>::disp;
3602 template <std::size_t NDIM> array_of_bools<NDIM> Displacements<NDIM>::periodic_axes{false};
3603 template <std::size_t NDIM> std::vector< Key<NDIM> > Displacements<NDIM>::disp_periodic[64];
3604
3605}
3606
3607#endif // MADNESS_MRA_MRAIMPL_H__INCLUDED
double w(double t, double eps)
Definition DKops.h:22
double q(double t)
Definition DKops.h:18
std::complex< double > double_complex
Definition cfft.h:14
Definition test_ar.cc:118
Definition test_ar.cc:141
Definition test_tree.cc:78
long dim(int i) const
Returns the size of dimension i.
Definition basetensor.h:147
long size() const
Returns the number of elements in the tensor.
Definition basetensor.h:138
This class is used to specify boundary conditions for all operators.
Definition bc.h:72
a class to track where relevant (parent) coeffs are
Definition funcimpl.h:791
Tri-diagonal operator traversing tree primarily for derivative operator.
Definition derivative.h:73
static std::vector< Key< NDIM > > disp
standard displacements to be used with standard kernels (range-unrestricted, no lattice sum)
Definition displacements.h:53
static array_of_bools< NDIM > periodic_axes
along which axes lattice summation is performed?
Definition displacements.h:54
static std::vector< Key< NDIM > > disp_periodic[64]
displacements to be used with lattice-summed kernels
Definition displacements.h:55
ElementaryInterface (formerly FunctorInterfaceWrapper) interfaces a c-function.
Definition function_interface.h:266
FunctionCommonData holds all Function data common for given k.
Definition function_common_data.h:52
static const FunctionCommonData< T, NDIM > & get(int k)
Definition function_common_data.h:111
static void _init_quadrature(int k, int npt, Tensor< double > &quad_x, Tensor< double > &quad_w, Tensor< double > &quad_phi, Tensor< double > &quad_phiw, Tensor< double > &quad_phit)
Initialize the quadrature information.
Definition mraimpl.h:87
void _init_twoscale()
Private. Initialize the twoscale coefficients.
Definition mraimpl.h:66
FunctionDefaults holds default paramaters as static class members.
Definition funcdefaults.h:100
static Tensor< double > make_default_cell_width()
Definition funcdefaults.h:135
static bool truncate_on_project
If true initial projection inserts at n-1 not n.
Definition funcdefaults.h:114
static bool apply_randomize
If true use randomization for load balancing in apply integral operator.
Definition funcdefaults.h:115
static double cell_volume
Volume of simulation cell.
Definition funcdefaults.h:121
static int k
Wavelet order.
Definition funcdefaults.h:105
static int truncate_mode
Truncation method.
Definition funcdefaults.h:110
static void set_default_pmap(World &world)
Sets the default process map.
Definition mraimpl.h:3548
static Tensor< double > cell_width
Width of simulation cell in each dimension.
Definition funcdefaults.h:119
static double thresh
Truncation threshold.
Definition funcdefaults.h:106
static bool debug
Controls output of debug info.
Definition funcdefaults.h:113
static int special_level
Minimum level for fine scale projection of special boxes.
Definition funcdefaults.h:108
static double cell_min_width
Size of smallest dimension.
Definition funcdefaults.h:122
static std::shared_ptr< WorldDCPmapInterface< Key< NDIM > > > pmap
Default mapping of keys to processes.
Definition funcdefaults.h:124
static const Tensor< double > & get_cell_width()
Returns the width of each user cell dimension.
Definition funcdefaults.h:369
static const BoundaryConditions< NDIM > & get_bc()
Returns the default boundary conditions.
Definition funcdefaults.h:310
static Tensor< double > cell
cell[NDIM][2] Simulation cell, cell(0,0)=xlo, cell(0,1)=xhi, ...
Definition funcdefaults.h:118
static int initial_level
Initial level for fine scale projection.
Definition funcdefaults.h:107
static bool autorefine
Whether to autorefine in multiplication, etc.
Definition funcdefaults.h:112
static Tensor< double > make_default_cell()
Definition funcdefaults.h:126
static std::optional< BoundaryConditions< NDIM > > bc
Default boundary conditions, not initialized by default and must be set explicitly before use.
Definition funcdefaults.h:117
static void print()
Definition mraimpl.h:3556
static Tensor< double > rcell_width
Reciprocal of width.
Definition funcdefaults.h:120
static double get_cell_min_width()
Returns the minimum width of any user cell dimension.
Definition funcdefaults.h:379
static bool project_randomize
If true use randomization for load balancing in project/refine.
Definition funcdefaults.h:116
static const Tensor< double > & get_cell()
Gets the user cell for the simulation.
Definition funcdefaults.h:347
static void set_defaults(World &world)
Definition mraimpl.h:3527
static int max_refine_level
Level at which to stop refinement.
Definition funcdefaults.h:109
static TensorType tt
structure of the tensor in FunctionNode
Definition funcdefaults.h:123
static bool refine
Whether to refine new functions.
Definition funcdefaults.h:111
Abstract base class interface required for functors used as input to Functions.
Definition function_interface.h:68
Definition funcimpl.h:5457
FunctionImpl holds all Function state to facilitate shallow copy semantics.
Definition funcimpl.h:945
bool is_nonstandard() const
Definition mraimpl.h:269
T eval_cube(Level n, coordT &x, const tensorT &c) const
Definition mraimpl.h:2021
void do_print_tree_graphviz(const keyT &key, std::ostream &os, Level maxlevel) const
Functor for the do_print_tree method (using GraphViz)
Definition mraimpl.h:2755
void change_tensor_type1(const TensorArgs &targs, bool fence)
change the tensor type of the coefficients in the FunctionNode
Definition mraimpl.h:1095
void evaldepthpt(const Vector< double, NDIM > &xin, const keyT &keyin, const typename Future< Level >::remote_refT &ref)
Get the depth of the tree at a point in simulation coordinates.
Definition mraimpl.h:2936
void scale_inplace(const T q, bool fence)
In-place scale by a constant.
Definition mraimpl.h:3107
void gaxpy_oop_reconstructed(const double alpha, const implT &f, const double beta, const implT &g, const bool fence)
perform: this= alpha*f + beta*g, invoked by result
Definition mraimpl.h:219
bool is_redundant() const
Returns true if the function is redundant.
Definition mraimpl.h:258
FunctionNode< Q, NDIM > nodeT
Type of node.
Definition funcimpl.h:955
std::size_t nCoeff_local() const
Returns the number of coefficients in the function for this MPI rank.
Definition mraimpl.h:1918
void print_size(const std::string name) const
print tree size and size
Definition mraimpl.h:1937
void print_info() const
Prints summary of data distribution.
Definition mraimpl.h:829
void abs_inplace(bool fence)
Definition mraimpl.h:3119
void print_timer() const
Definition mraimpl.h:353
void evalR(const Vector< double, NDIM > &xin, const keyT &keyin, const typename Future< long >::remote_refT &ref)
Get the rank of leaf box of the tree at a point in simulation coordinates.
Definition mraimpl.h:2978
const FunctionCommonData< T, NDIM > & cdata
Definition funcimpl.h:983
void do_print_grid(const std::string filename, const std::vector< keyT > &keys) const
print the grid in xyz format
Definition mraimpl.h:580
std::size_t nCoeff() const
Returns the number of coefficients in the function ... collective global sum.
Definition mraimpl.h:1928
keyT neighbor_in_volume(const keyT &key, const keyT &disp) const
Returns key of general neighbor that resides in-volume.
Definition mraimpl.h:3226
void compress(const TreeState newstate, bool fence)
compress the wave function
Definition mraimpl.h:1496
std::pair< coeffT, double > compress_op(const keyT &key, const std::vector< Future< std::pair< coeffT, double > > > &v, bool nonstandard)
calculate the wavelet coefficients using the sum coefficients of all child nodes
Definition mraimpl.h:1664
Future< bool > truncate_spawn(const keyT &key, double tol)
Returns true if after truncation this node has coefficients.
Definition mraimpl.h:2600
Future< double > norm_tree_spawn(const keyT &key)
Definition mraimpl.h:1566
std::vector< keyT > local_leaf_keys() const
return the keys of the local leaf boxes
Definition mraimpl.h:554
void do_print_tree(const keyT &key, std::ostream &os, Level maxlevel) const
Functor for the do_print_tree method.
Definition mraimpl.h:2673
void unset_functor()
Definition mraimpl.h:308
void do_print_plane(const std::string filename, std::vector< Tensor< double > > plotinfo, const int xaxis, const int yaxis, const coordT el2)
print the MRA structure
Definition mraimpl.h:495
std::pair< Key< NDIM >, ShallowNode< T, NDIM > > find_datum(keyT key) const
return the a std::pair<key, node>, which MUST exist
Definition mraimpl.h:961
void set_functor(const std::shared_ptr< FunctionFunctorInterface< T, NDIM > > functor1)
Definition mraimpl.h:289
bool verify_tree_state_local() const
check that the tree state and the coeffs are consistent
Definition mraimpl.h:165
const std::shared_ptr< WorldDCPmapInterface< Key< NDIM > > > & get_pmap() const
Definition mraimpl.h:203
void sock_it_to_me(const keyT &key, const RemoteReference< FutureImpl< std::pair< keyT, coeffT > > > &ref) const
Walk up the tree returning pair(key,node) for first node with coefficients.
Definition mraimpl.h:2813
double get_thresh() const
Definition mraimpl.h:324
void trickle_down(bool fence)
sum all the contributions from all scales after applying an operator in mod-NS form
Definition mraimpl.h:1350
std::pair< coeffT, double > make_redundant_op(const keyT &key, const std::vector< Future< std::pair< coeffT, double > > > &v)
similar to compress_op, but insert only the sum coefficients in the tree
Definition mraimpl.h:1724
void set_autorefine(bool value)
Definition mraimpl.h:333
tensorT filter(const tensorT &s) const
Transform sum coefficients at level n to sums+differences at level n-1.
Definition mraimpl.h:1148
void chop_at_level(const int n, const bool fence=true)
remove all nodes with level higher than n
Definition mraimpl.h:1111
void print_tree_json(std::ostream &os=std::cout, Level maxlevel=10000) const
Definition mraimpl.h:2693
coeffT parent_to_child_NS(const keyT &child, const keyT &parent, const coeffT &coeff) const
Directly project parent NS coeffs to child NS coeffs.
Definition mraimpl.h:703
void mapdim(const implT &f, const std::vector< long > &map, bool fence)
Permute the dimensions of f according to map, result on this.
Definition mraimpl.h:1053
bool is_compressed() const
Returns true if the function is compressed.
Definition mraimpl.h:246
void mirror(const implT &f, const std::vector< long > &mirror, bool fence)
mirror the dimensions of f according to map, result on this
Definition mraimpl.h:1062
void print_stats() const
print the number of configurations per node
Definition mraimpl.h:1965
void broaden(const array_of_bools< NDIM > &is_periodic, bool fence)
Definition mraimpl.h:1299
coeffT truncate_reconstructed_op(const keyT &key, const std::vector< Future< coeffT > > &v, const double tol)
given the sum coefficients of all children, truncate or not
Definition mraimpl.h:1613
void fcube(const keyT &key, const FunctionFunctorInterface< T, NDIM > &f, const Tensor< double > &qx, tensorT &fval) const
Evaluate function at quadrature points in the specified box.
Definition mraimpl.h:2438
void forward_do_diff1(const DerivativeBase< T, NDIM > *D, const implT *f, const keyT &key, const std::pair< keyT, coeffT > &left, const std::pair< keyT, coeffT > &center, const std::pair< keyT, coeffT > &right)
Definition mraimpl.h:919
std::vector< Slice > child_patch(const keyT &child) const
Returns patch referring to coeffs of child in parent box.
Definition mraimpl.h:692
void print_tree_graphviz(std::ostream &os=std::cout, Level maxlevel=10000) const
Definition mraimpl.h:2746
std::size_t min_nodes() const
Returns the min number of nodes on a processor.
Definition mraimpl.h:1869
void make_redundant(const bool fence)
convert this to redundant, i.e. have sum coefficients on all levels
Definition mraimpl.h:1524
std::size_t max_nodes() const
Returns the max number of nodes on a processor.
Definition mraimpl.h:1860
coeffT upsample(const keyT &key, const coeffT &coeff) const
upsample the sum coefficients of level 1 to sum coeffs on level n+1
Definition mraimpl.h:1227
void flo_unary_op_node_inplace(const opT &op, bool fence)
Definition funcimpl.h:2150
std::size_t size_local() const
Returns the number of coefficients in the function for each rank.
Definition mraimpl.h:1887
void plot_cube_kernel(archive::archive_ptr< Tensor< T > > ptr, const keyT &key, const coordT &plotlo, const coordT &plothi, const std::vector< long > &npt, bool eval_refine) const
Definition mraimpl.h:3317
T trace_local() const
Returns int(f(x),x) in local volume.
Definition mraimpl.h:3161
void print_grid(const std::string filename) const
Definition mraimpl.h:538
Future< std::pair< coeffT, double > > compress_spawn(const keyT &key, bool nonstandard, bool keepleaves, bool redundant1)
Invoked on node where key is local.
Definition mraimpl.h:3254
bool get_autorefine() const
Definition mraimpl.h:330
void phi_for_mul(Level np, Translation lp, Level nc, Translation lc, Tensor< double > &phi) const
Compute the Legendre scaling functions for multiplication.
Definition mraimpl.h:3129
Future< std::pair< keyT, coeffT > > find_me(const keyT &key) const
find_me. Called by diff_bdry to get coefficients of boundary function
Definition mraimpl.h:3241
TensorType get_tensor_type() const
Definition mraimpl.h:315
void remove_leaf_coefficients(const bool fence)
Definition mraimpl.h:1518
void insert_zero_down_to_initial_level(const keyT &key)
Initialize nodes to zero function at initial_level of refinement.
Definition mraimpl.h:2569
void do_diff1(const DerivativeBase< T, NDIM > *D, const implT *f, const keyT &key, const std::pair< keyT, coeffT > &left, const std::pair< keyT, coeffT > &center, const std::pair< keyT, coeffT > &right)
Definition mraimpl.h:930
void do_print_tree_json(const keyT &key, std::multimap< Level, std::tuple< tranT, std::string > > &data, Level maxlevel) const
Functor for the do_print_tree_json method.
Definition mraimpl.h:2724
void finalize_sum()
after summing up we need to do some cleanup;
Definition mraimpl.h:1817
dcT coeffs
The coefficients.
Definition funcimpl.h:988
bool exists_and_is_leaf(const keyT &key) const
Definition mraimpl.h:1271
void verify_tree() const
Verify tree is properly constructed ... global synchronization involved.
Definition mraimpl.h:107
void set_tensor_args(const TensorArgs &t)
Definition mraimpl.h:321
Range< typename dcT::const_iterator > rangeT
Definition funcimpl.h:5586
std::size_t real_size() const
Returns the number of coefficients in the function ... collective global sum.
Definition mraimpl.h:1905
bool exists_and_has_children(const keyT &key) const
Definition mraimpl.h:1266
void sum_down_spawn(const keyT &key, const coeffT &s)
is this the same as trickle_down() ?
Definition mraimpl.h:872
keyT neighbor(const keyT &key, const keyT &disp, const array_of_bools< NDIM > &is_periodic) const
Returns key of general neighbor enforcing BC.
Definition mraimpl.h:3211
void norm_tree(bool fence)
compute for each FunctionNode the norm of the function inside that node
Definition mraimpl.h:1543
bool has_leaves() const
Definition mraimpl.h:284
bool verify_parents_and_children() const
check that parents and children are consistent
Definition mraimpl.h:115
void reconstruct_op(const keyT &key, const coeffT &s, const bool accumulate_NS=true)
Definition mraimpl.h:2075
const coeffT parent_to_child(const coeffT &s, const keyT &parent, const keyT &child) const
Directly project parent coeffs to child coeffs.
Definition mraimpl.h:3144
void undo_redundant(const bool fence)
convert this from redundant to standard reconstructed form
Definition mraimpl.h:1534
GenTensor< Q > coeffT
Type of tensor used to hold coeffs.
Definition funcimpl.h:956
const keyT & key0() const
Returns cdata.key0.
Definition mraimpl.h:390
double finalize_apply()
after apply we need to do some cleanup;
Definition mraimpl.h:1774
const dcT & get_coeffs() const
Definition mraimpl.h:339
double norm2sq_local() const
Returns the square of the local norm ... no comms.
Definition mraimpl.h:1826
const FunctionCommonData< T, NDIM > & get_cdata() const
Definition mraimpl.h:345
void sum_down(bool fence)
After 1d push operator must sum coeffs down the tree to restore correct scaling function coefficients...
Definition mraimpl.h:911
bool noautorefine(const keyT &key, const tensorT &t) const
Always returns false (for when autorefine is not wanted)
Definition mraimpl.h:855
double truncate_tol(double tol, const keyT &key) const
Returns the truncation threshold according to truncate_method.
Definition mraimpl.h:645
bool autorefine_square_test(const keyT &key, const nodeT &t) const
Returns true if this block of coeffs needs autorefining.
Definition mraimpl.h:861
void erase(const Level &max_level)
truncate tree at a certain level
Definition mraimpl.h:735
void reconstruct(bool fence)
reconstruct this tree – respects fence
Definition mraimpl.h:1464
void multiply(const implT *f, const FunctionImpl< T, LDIM > *g, const int particle)
multiply f (a pair function of NDIM) with an orbital g (LDIM=NDIM/2)
Definition funcimpl.h:3580
coeffT assemble_coefficients(const keyT &key, const coeffT &coeff_ket, const coeffT &vpotential1, const coeffT &vpotential2, const tensorT &veri) const
given several coefficient tensors, assemble a result tensor
Definition mraimpl.h:1009
static void tnorm(const tensorT &t, double *lo, double *hi)
Computes norm of low/high-order polyn. coeffs for autorefinement test.
Definition mraimpl.h:3021
std::pair< bool, T > eval_local_only(const Vector< double, NDIM > &xin, Level maxlevel)
Evaluate function only if point is local returning (true,value); otherwise return (false,...
Definition mraimpl.h:2907
std::size_t max_depth() const
Returns the maximum depth of the tree ... collective ... global sum/broadcast.
Definition mraimpl.h:1852
std::size_t size() const
Returns the number of coefficients in the function ... collective global sum.
Definition mraimpl.h:1897
void reduce_rank(const double thresh, bool fence)
reduce the rank of the coefficients tensors
Definition mraimpl.h:1103
std::shared_ptr< FunctionFunctorInterface< T, NDIM > > get_functor()
Definition mraimpl.h:296
tensorT unfilter(const tensorT &s) const
Transform sums+differences at level n to sum coefficients at level n+1.
Definition mraimpl.h:1177
Tensor< T > eval_plot_cube(const coordT &plotlo, const coordT &plothi, const std::vector< long > &npt, const bool eval_refine=false) const
Definition mraimpl.h:3410
void change_tree_state(const TreeState finalstate, bool fence=true)
change the tree state of this function, might or might not respect fence!
Definition mraimpl.h:1403
Future< coeffT > truncate_reconstructed_spawn(const keyT &key, const double tol)
truncate using a tree in reconstructed form
Definition mraimpl.h:1589
void map_and_mirror(const implT &f, const std::vector< long > &map, const std::vector< long > &mirror, bool fence)
map and mirror the translation index and the coefficients, result on this
Definition mraimpl.h:1072
void truncate(double tol, bool fence)
Truncate according to the threshold with optional global fence.
Definition mraimpl.h:374
bool is_reconstructed() const
Returns true if the function is compressed.
Definition mraimpl.h:252
double norm_tree_op(const keyT &key, const std::vector< Future< double > > &v)
Definition mraimpl.h:1551
void reset_timer()
Definition mraimpl.h:362
void refine_to_common_level(const std::vector< FunctionImpl< T, NDIM > * > &v, const std::vector< tensorT > &c, const keyT key)
Refine multiple functions down to the same finest level.
Definition mraimpl.h:765
int get_k() const
Definition mraimpl.h:336
void eval(const Vector< double, NDIM > &xin, const keyT &keyin, const typename Future< T >::remote_refT &ref)
Evaluate the function at a point in simulation coordinates.
Definition mraimpl.h:2863
bool truncate_op(const keyT &key, double tol, const std::vector< Future< bool > > &v)
Definition mraimpl.h:2636
void zero_norm_tree()
Definition mraimpl.h:1288
std::size_t max_local_depth() const
Returns the maximum local depth of the tree ... no communications.
Definition mraimpl.h:1838
tensorT project(const keyT &key) const
Definition mraimpl.h:2781
double check_symmetry_local() const
Returns some asymmetry measure ... no comms.
Definition mraimpl.h:751
Future< double > get_norm_tree_recursive(const keyT &key) const
Definition mraimpl.h:2802
bool is_redundant_after_merge() const
Returns true if the function is redundant_after_merge.
Definition mraimpl.h:264
Key< NDIM > keyT
Type of key.
Definition funcimpl.h:954
bool is_on_demand() const
Definition mraimpl.h:279
void accumulate_timer(const double time) const
Definition mraimpl.h:348
void trickle_down_op(const keyT &key, const coeffT &s)
sum all the contributions from all scales after applying an operator in mod-NS form
Definition mraimpl.h:1361
void set_thresh(double value)
Definition mraimpl.h:327
Tensor< double > print_plane_local(const int xaxis, const int yaxis, const coordT &el2)
collect the data for a plot of the MRA structure locally on each node
Definition mraimpl.h:419
void sock_it_to_me_too(const keyT &key, const RemoteReference< FutureImpl< std::pair< keyT, coeffT > > > &ref) const
Definition mraimpl.h:2841
void broaden_op(const keyT &key, const std::vector< Future< bool > > &v)
Definition mraimpl.h:1277
void print_plane(const std::string filename, const int xaxis, const int yaxis, const coordT &el2)
Print a plane ("xy", "xz", or "yz") containing the point x to file.
Definition mraimpl.h:399
void print_tree(std::ostream &os=std::cout, Level maxlevel=10000) const
Definition mraimpl.h:2664
void project_refine_op(const keyT &key, bool do_refine, const std::vector< Vector< double, NDIM > > &specialpts)
Definition mraimpl.h:2450
std::size_t tree_size() const
Returns the size of the tree structure of the function ... collective global sum.
Definition mraimpl.h:1878
void add_scalar_inplace(T t, bool fence)
Adds a constant to the function. Local operation, optional fence.
Definition mraimpl.h:2528
tensorT downsample(const keyT &key, const std::vector< Future< coeffT > > &v) const
downsample the sum coefficients of level n+1 to sum coeffs on level n
Definition mraimpl.h:1197
void abs_square_inplace(bool fence)
Definition mraimpl.h:3124
void put_in_box(ProcessID from, long nl, long ni) const
Definition mraimpl.h:820
TensorArgs get_tensor_args() const
Definition mraimpl.h:318
void average(const implT &rhs)
take the average of two functions, similar to: this=0.5*(this+rhs)
Definition mraimpl.h:1084
void diff(const DerivativeBase< T, NDIM > *D, const implT *f, bool fence)
Definition mraimpl.h:942
void square_inplace(bool fence)
Pointwise squaring of function with optional global fence.
Definition mraimpl.h:3113
void remove_internal_coefficients(const bool fence)
Definition mraimpl.h:1513
void compute_snorm_and_dnorm(bool fence=true)
compute norm of s and d coefficients for all nodes
Definition mraimpl.h:1127
void standard(bool fence)
Changes non-standard compressed form to standard compressed form.
Definition mraimpl.h:1761
bool is_nonstandard_with_leaves() const
Definition mraimpl.h:274
FunctionNode holds the coefficients, etc., at each node of the 2^NDIM-tree.
Definition funcimpl.h:127
bool has_coeff() const
Returns true if there are coefficients in this node.
Definition funcimpl.h:200
void clear_coeff()
Clears the coefficients (has_coeff() will subsequently return false)
Definition funcimpl.h:295
bool is_leaf() const
Returns true if this does not have children.
Definition funcimpl.h:213
void set_has_children(bool flag)
Sets has_children attribute to value of flag.
Definition funcimpl.h:254
void set_is_leaf(bool flag)
Sets has_children attribute to value of !flag.
Definition funcimpl.h:280
void print_json(std::ostream &s) const
Definition funcimpl.h:466
bool has_children() const
Returns true if this node has children.
Definition funcimpl.h:207
void set_coeff(const coeffT &coeffs)
Takes a shallow copy of the coeff — same as this->coeff()=coeff.
Definition funcimpl.h:285
coeffT & coeff()
Returns a non-const reference to the tensor containing the coeffs.
Definition funcimpl.h:227
void set_norm_tree(double norm_tree)
Sets the value of norm_tree.
Definition funcimpl.h:306
A multiresolution adaptive numerical function.
Definition mra.h:139
Implements the functionality of futures.
Definition future.h:74
A future is a possibly yet unevaluated value.
Definition future.h:373
T & get(bool dowork=true) &
Gets the value, waiting if necessary.
Definition future.h:574
remote_refT remote_ref(World &world) const
Returns a structure used to pass references to another process.
Definition future.h:675
void set(const Future< T > &other)
A.set(B), where A and B are futures ensures A has/will have the same value as B.
Definition future.h:508
RemoteReference< FutureImpl< T > > remote_refT
Definition future.h:398
Definition lowranktensor.h:59
GenTensor convert(const TensorArgs &targs) const
Definition gentensor.h:198
GenTensor full_tensor() const
Definition gentensor.h:200
long dim(const int i) const
return the number of entries in dimension i
Definition lowranktensor.h:391
Tensor< T > full_tensor_copy() const
Definition gentensor.h:206
long ndim() const
Definition lowranktensor.h:386
constexpr bool is_full_tensor() const
Definition gentensor.h:224
size_t real_size() const
Definition gentensor.h:214
GenTensor< T > & emul(const GenTensor< T > &other)
Inplace multiply by corresponding elements of argument Tensor.
Definition lowranktensor.h:631
float_scalar_type normf() const
Definition lowranktensor.h:406
void reduce_rank(const double &eps)
Definition gentensor.h:217
long rank() const
Definition gentensor.h:212
TensorType tensor_type() const
Definition gentensor.h:221
bool has_data() const
Definition gentensor.h:210
const long * dims() const
return the number of entries in dimension i
Definition lowranktensor.h:397
GenTensor & gaxpy(const T alpha, const GenTensor &other, const T beta)
Definition lowranktensor.h:580
IsSupported< TensorTypeData< Q >, GenTensor< T > & >::type scale(Q fac)
Inplace multiplication by scalar of supported type (legacy name)
Definition lowranktensor.h:426
constexpr bool is_svd_tensor() const
Definition gentensor.h:222
Definition indexit.h:141
Definition indexit.h:55
Iterates in lexical order thru all children of a key.
Definition key.h:466
Key is the index for a node of the 2^NDIM-tree.
Definition key.h:69
Level level() const
Definition key.h:168
bool is_neighbor_of(const Key &key, const array_of_bools< NDIM > &bperiodic) const
Assuming keys are at the same level, returns true if displaced by no more than 1 in any direction.
Definition key.h:287
bool thisKeyContains(const Vector< double, NDIM > &x, const unsigned int &dim0, const unsigned int &dim1) const
check if this MultiIndex contains point x, disregarding these two dimensions
Definition key.h:319
bool is_invalid() const
Checks if a key is invalid.
Definition key.h:118
Key parent(int generation=1) const
Returns the key of the parent.
Definition key.h:252
const Vector< Translation, NDIM > & translation() const
Definition key.h:173
A pmap that locates children on odd levels with their even level parents.
Definition funcimpl.h:105
Range, vaguely a la Intel TBB, to encapsulate a random-access, STL-like start and end iterator with c...
Definition range.h:64
Simple structure used to manage references/pointers to remote instances.
Definition worldref.h:395
double weights(const unsigned int &i) const
return the weight
Definition srconf.h:671
const Tensor< T > flat_vector(const unsigned int &idim) const
return shallow copy of a slice of one of the vectors, flattened to (r,kVec)
Definition srconf.h:545
Definition SVDTensor.h:42
long rank() const
Definition SVDTensor.h:77
A slice defines a sub-range or patch of a dimension.
Definition slice.h:103
static TaskAttributes hipri()
Definition thread.h:456
static TaskAttributes generator()
Definition thread.h:448
Traits class to specify support of numeric types.
Definition type_data.h:56
A tensor is a multidimensional array.
Definition tensor.h:317
float_scalar_type normf() const
Returns the Frobenius norm of the tensor.
Definition tensor.h:1726
Tensor< T > & fill(T x)
Inplace fill with a scalar (legacy name)
Definition tensor.h:562
T sum() const
Returns the sum of all elements of the tensor.
Definition tensor.h:1662
Tensor< T > reshape(int ndimnew, const long *d)
Returns new view/tensor reshaping size/number of dimensions to conforming tensor.
Definition tensor.h:1384
T * ptr()
Returns a pointer to the internal data.
Definition tensor.h:1825
IsSupported< TensorTypeData< Q >, Tensor< T > & >::type scale(Q x)
Inplace multiplication by scalar of supported type (legacy name)
Definition tensor.h:686
Tensor< T > & emul(const Tensor< T > &t)
Inplace multiply by corresponding elements of argument Tensor.
Definition tensor.h:1799
bool has_data() const
Definition tensor.h:1887
iterator begin()
Returns an iterator to the beginning of the local data (no communication)
Definition worlddc.h:1070
implT::const_iterator const_iterator
Definition worlddc.h:872
iterator end()
Returns an iterator past the end of the local data (no communication)
Definition worlddc.h:1084
Future< iterator > futureT
Definition worlddc.h:875
implT::iterator iterator
Definition worlddc.h:871
implT::accessor accessor
Definition worlddc.h:873
void fence(bool debug=false)
Synchronizes all processes in communicator AND globally ensures no pending AM or tasks.
Definition worldgop.cc:161
A parallel world class.
Definition world.h:132
ProcessID rank() const
Returns the process rank in this World (same as MPI_Comm_rank()).
Definition world.h:320
WorldGopInterface & gop
Global operations.
Definition world.h:207
Wrapper for an opaque pointer for serialization purposes.
Definition archive.h:850
syntactic sugar for std::array<bool, N>
Definition array_of_bools.h:19
char * p(char *buf, const char *name, int k, int initial_level, double thresh, int order)
Definition derivatives.cc:72
const std::size_t bufsize
Definition derivatives.cc:16
static double lo
Definition dirac-hatom.cc:23
static bool debug
Definition dirac-hatom.cc:16
Provides FunctionCommonData, FunctionImpl and FunctionFactory.
static double function(const coord_3d &r)
Normalized gaussian.
Definition functionio.cc:100
auto T(World &world, response_space &f) -> response_space
Definition global_functions.cc:34
Tensor< TENSOR_RESULT_TYPE(T, Q) > & fast_transform(const Tensor< T > &t, const Tensor< Q > &c, Tensor< TENSOR_RESULT_TYPE(T, Q) > &result, Tensor< TENSOR_RESULT_TYPE(T, Q) > &workspace)
Restricted but heavily optimized form of transform()
Definition tensor.h:2444
const double beta
Definition gygi_soltion.cc:62
static const double v
Definition hatom_sf_dirac.cc:20
static double u(double r, double c)
Definition he.cc:20
Tensor< double > op(const Tensor< double > &x)
Definition kain.cc:508
static double pow(const double *a, const double *b)
Definition lda.h:74
#define MADNESS_CHECK(condition)
Check a condition — even in a release build the condition is always evaluated so it can have side eff...
Definition madness_exception.h:182
#define MADNESS_EXCEPTION(msg, value)
Macro for throwing a MADNESS exception.
Definition madness_exception.h:119
#define MADNESS_ASSERT(condition)
Assert a condition that should be free of side-effects since in release builds this might be a no-op.
Definition madness_exception.h:134
#define MADNESS_CHECK_THROW(condition, msg)
Check a condition — even in a release build the condition is always evaluated so it can have side eff...
Definition madness_exception.h:207
static const bool VERIFY_TREE
Definition mra.h:57
Namespace for all elements and tools of MADNESS.
Definition DFParameters.h:10
bool two_scale_hg(int k, Tensor< double > *hg)
Definition twoscale.cc:151
@ BC_FREE
Definition bc.h:53
void make_redundant(World &world, const std::vector< Function< T, NDIM > > &v, bool fence=true)
change tree_state of a vector of functions to redundant
Definition vmra.h:186
static const char * filename
Definition legendre.cc:96
static const std::vector< Slice > ___
Entire dimension.
Definition slice.h:128
static bool enforce_in_volume(Level n, const Translation &l)
Definition mraimpl.h:3205
double abs(double x)
Definition complexfun.h:48
static double cpu_time()
Returns the cpu time in seconds relative to an arbitrary origin.
Definition timers.h:127
Vector< double, 3 > coordT
Definition corepotential.cc:54
GenTensor< TENSOR_RESULT_TYPE(R, Q)> general_transform(const GenTensor< R > &t, const Tensor< Q > c[])
Definition gentensor.h:274
response_space scale(response_space a, double b)
void legendre_scaling_functions(double x, long k, double *p)
Evaluate the first k Legendre scaling functions.
Definition legendre.cc:85
void norm_tree(World &world, const std::vector< Function< T, NDIM > > &v, bool fence=true)
Makes the norm tree for all functions in a vector.
Definition vmra.h:1181
std::vector< Function< TENSOR_RESULT_TYPE(T, R), NDIM > > transform(World &world, const std::vector< Function< T, NDIM > > &v, const Tensor< R > &c, bool fence=true)
Transforms a vector of functions according to new[i] = sum[j] old[j]*c[j,i].
Definition vmra.h:707
static Key< NDIM > simpt2key(const Vector< T, NDIM > &pt, Level n)
Definition funcdefaults.h:434
TreeState
Definition funcdefaults.h:59
@ nonstandard_after_apply
s and d coeffs, state after operator application
Definition funcdefaults.h:64
@ on_demand
no coeffs anywhere, but a functor providing if necessary
Definition funcdefaults.h:67
@ redundant_after_merge
s coeffs everywhere, must be summed up to yield the result
Definition funcdefaults.h:66
@ reconstructed
s coeffs at the leaves only
Definition funcdefaults.h:60
@ nonstandard
s and d coeffs in internal nodes
Definition funcdefaults.h:62
@ unknown
Definition funcdefaults.h:68
@ compressed
d coeffs in internal nodes, s and d coeffs at the root
Definition funcdefaults.h:61
@ redundant
s coeffs everywhere
Definition funcdefaults.h:65
@ nonstandard_with_leaves
like nonstandard, with s coeffs at the leaves
Definition funcdefaults.h:63
static void user_to_sim(const Vector< double, NDIM > &xuser, Vector< double, NDIM > &xsim)
Convert user coords (cell[][]) to simulation coords ([0,1]^ndim)
Definition funcdefaults.h:425
void standard(World &world, std::vector< Function< T, NDIM > > &v, bool fence=true)
Generates standard form of a vector of functions.
Definition vmra.h:243
Tensor< double > tensorT
Definition distpm.cc:21
void compress(World &world, const std::vector< Function< T, NDIM > > &v, bool fence=true)
Compress a vector of functions.
Definition vmra.h:149
const std::vector< Function< T, NDIM > > & reconstruct(const std::vector< Function< T, NDIM > > &v)
reconstruct a vector of functions
Definition vmra.h:162
response_space transpose(response_space &f)
Definition basic_operators.cc:10
int64_t Translation
Definition key.h:57
void plotdx(const Function< T, NDIM > &f, const char *filename, const Tensor< double > &cell=FunctionDefaults< NDIM >::get_cell(), const std::vector< long > &npt=std::vector< long >(NDIM, 201L), bool binary=true)
Writes an OpenDX format file with a cube/slice of points on a uniform grid.
Definition mraimpl.h:3446
Function< T, NDIM > mirror(const Function< T, NDIM > &f, const std::vector< long > &mirrormap, bool fence=true)
Generate a new function by mirroring within the dimensions .. optional fence.
Definition mra.h:2336
static void verify_tree(World &world, const std::vector< Function< T, NDIM > > &v)
Definition SCF.cc:72
static const Slice _(0,-1, 1)
void change_tensor_type(GenTensor< T > &t, const TensorArgs &targs)
change representation to targ.tt
Definition gentensor.h:284
int Level
Definition key.h:58
std::enable_if< std::is_base_of< ProjectorBase, projT >::value, OuterProjector< projT, projQ > >::type outer(const projT &p0, const projQ &p1)
Definition projector.h:457
TreeState get_tree_state(const Function< T, NDIM > &f)
get tree state of a function
Definition mra.h:2794
bool gauss_legendre(int n, double xlo, double xhi, double *x, double *w)
Definition legendre.cc:226
void print(const T &t, const Ts &... ts)
Print items to std::cout (items separated by spaces) and terminate with a new line.
Definition print.h:225
Tensor< T > fcube(const Key< NDIM > &, T(*f)(const Vector< double, NDIM > &), const Tensor< double > &)
Definition mraimpl.h:2129
TensorType
low rank representations of tensors (see gentensor.h)
Definition gentensor.h:120
@ TT_2D
Definition gentensor.h:120
@ TT_FULL
Definition gentensor.h:120
static void dxprintvalue(FILE *f, const double t)
Definition mraimpl.h:3437
void refine(World &world, const std::vector< Function< T, NDIM > > &vf, bool fence=true)
refine the functions according to the autorefine criteria
Definition vmra.h:196
NDIM & f
Definition mra.h:2481
void error(const char *msg)
Definition world.cc:139
const Function< T, NDIM > & change_tree_state(const Function< T, NDIM > &f, const TreeState finalstate, bool fence=true)
change tree state of a function
Definition mra.h:2807
NDIM const Function< R, NDIM > & g
Definition mra.h:2481
double wall_time()
Returns the wall time in seconds relative to an arbitrary origin.
Definition timers.cc:48
static bool print_timings
Definition SCF.cc:104
constexpr Vector< T, sizeof...(Ts)+1 > vec(T t, Ts... ts)
Factory function for creating a madness::Vector.
Definition vector.h:750
Function< T, NDIM > multiply(const Function< T, NDIM > f, const Function< T, LDIM > g, const int particle, const bool fence=true)
multiply a high-dimensional function with a low-dimensional function
Definition mra.h:2437
static std::vector< double > ttt
Definition SCF.cc:105
Function< T, NDIM > project(const Function< T, NDIM > &other, int k=FunctionDefaults< NDIM >::get_k(), double thresh=FunctionDefaults< NDIM >::get_thresh(), bool fence=true)
Definition mra.h:2464
std::string name(const FuncType &type, const int ex=-1)
Definition ccpairfunction.h:28
Function< T, NDIM > copy(const Function< T, NDIM > &f, const std::shared_ptr< WorldDCPmapInterface< Key< NDIM > > > &pmap, bool fence=true)
Create a new copy of the function with different distribution and optional fence.
Definition mra.h:2066
static const int MAXK
The maximum wavelet order presently supported.
Definition funcdefaults.h:54
static bool enforce_bc(bool is_periodic, Level n, Translation &l)
Definition mraimpl.h:3185
Definition mraimpl.h:50
bool isnan(const std::complex< T > &v)
Definition mraimpl.h:52
const double mu
Definition navstokes_cosines.cc:95
static const double b
Definition nonlinschro.cc:119
static const double d
Definition nonlinschro.cc:121
static const double a
Definition nonlinschro.cc:118
static const double c
Definition relops.cc:10
static const double m
Definition relops.cc:9
static const double L
Definition rk.cc:46
static const double thresh
Definition rk.cc:45
static const long k
Definition rk.cc:44
const double xi
Exponent for delta function approx.
Definition siam_example.cc:60
Definition test_ar.cc:204
Definition test_ccpairfunction.cc:22
add two functions f and g: result=alpha * f + beta * g
Definition funcimpl.h:3519
"put" this on g
Definition funcimpl.h:2575
change representation of nodes' coeffs to low rank, optional fence
Definition funcimpl.h:2608
check symmetry wrt particle exchange
Definition funcimpl.h:2281
compute the norm of the wavelet coefficients
Definition funcimpl.h:4416
mirror dimensions of this, write result on f
Definition funcimpl.h:2509
map this on f
Definition funcimpl.h:2429
mirror dimensions of this, write result on f
Definition funcimpl.h:2459
Definition funcimpl.h:5511
reduce the rank of the nodes, optional fence
Definition funcimpl.h:2255
Changes non-standard compressed form to standard compressed form.
Definition funcimpl.h:4637
given an NS tree resulting from a convolution, truncate leafs if appropriate
Definition funcimpl.h:2176
remove all coefficients of internal nodes
Definition funcimpl.h:2201
remove all coefficients of leaf nodes
Definition funcimpl.h:2218
Definition funcimpl.h:4488
shallow-copy, pared-down version of FunctionNode, for special purpose only
Definition funcimpl.h:749
TensorArgs holds the arguments for creating a LowRankTensor.
Definition gentensor.h:134
double thresh
Definition gentensor.h:135
Definition mraimpl.h:3093
void operator()(const Key< NDIM > &key, Tensor< T > &t) const
Definition mraimpl.h:3094
void serialize(Archive &ar)
Definition mraimpl.h:3095
Definition mraimpl.h:3099
void operator()(const Key< NDIM > &key, Tensor< T > &t) const
Definition mraimpl.h:3100
void serialize(Archive &ar)
Definition mraimpl.h:3101
Definition mraimpl.h:3061
void operator()(const A &a, const B &b) const
Definition mraimpl.h:3062
void serialize(Archive &ar)
Definition mraimpl.h:3064
Definition mraimpl.h:3068
void operator()(const Key< NDIM > &key, FunctionNode< T, NDIM > &node) const
Definition mraimpl.h:3076
void serialize(Archive &ar)
Definition mraimpl.h:3079
T q
Definition mraimpl.h:3069
scaleinplace()
Definition mraimpl.h:3070
scaleinplace(T q)
Definition mraimpl.h:3072
void operator()(const Key< NDIM > &key, Tensor< T > &t) const
Definition mraimpl.h:3073
Definition mraimpl.h:3085
void serialize(Archive &ar)
Definition mraimpl.h:3089
void operator()(const Key< NDIM > &key, Tensor< T > &t) const
Definition mraimpl.h:3086
insert/replaces the coefficients into the function
Definition funcimpl.h:692
Definition lowrankfunction.h:332
int np
Definition tdse1d.cc:165
static const double s0
Definition tdse4.cc:83
AtomicInt sum
Definition test_atomicint.cc:46
int me
Definition test_binsorter.cc:10
double norm(const T i1)
Definition test_cloud.cc:72
int task(int i)
Definition test_runtime.cpp:4
void e()
Definition test_sig.cc:75
#define N
Definition testconv.cc:37
static const double alpha
Definition testcosine.cc:10
static const int truncate_mode
Definition testcosine.cc:14
constexpr std::size_t NDIM
Definition testgconv.cc:54
double h(const coord_1d &r)
Definition testgconv.cc:175
double g1(const coord_t &r)
Definition testgconv.cc:122
std::size_t axis
Definition testpdiff.cc:59
double k0
Definition testperiodic.cc:66
Defines and implements WorldObject.
Implements WorldContainer.
Defines and implements a concurrent hashmap.
#define PROFILE_FUNC
Definition worldprofile.h:209
#define PROFILE_MEMBER_FUNC(classname)
Definition worldprofile.h:210
#define PROFILE_BLOCK(name)
Definition worldprofile.h:208
int ProcessID
Used to clearly identify process number/rank.
Definition worldtypes.h:43
void test()
Definition y.cc:696