|
| ElementaryInterface (T(*f)(const coordT &)) |
|
T | operator() (const coordT &x) const |
| You should implement this to return f(x) More...
|
|
coeffT | values (const Key< NDIM > &key, const Tensor< double > &quad_x) const |
|
| FunctionFunctorInterface () |
|
virtual | ~FunctionFunctorInterface () |
|
virtual coeffT | coeff (const keyT &) const |
|
virtual void | operator() (const Vector< double *, 1 > &xvals, T *fvals, int npts) const |
|
virtual void | operator() (const Vector< double *, 2 > &xvals, T *fvals, int npts) const |
|
virtual void | operator() (const Vector< double *, 3 > &xvals, T *fvals, int npts) const |
|
virtual void | operator() (const Vector< double *, 4 > &xvals, T *fvals, int npts) const |
|
virtual void | operator() (const Vector< double *, 5 > &xvals, T *fvals, int npts) const |
|
virtual void | operator() (const Vector< double *, 6 > &xvals, T *fvals, int npts) const |
|
virtual bool | provides_coeff () const |
| does this functor directly provide sum coefficients? or only function values? More...
|
|
virtual bool | screened (const Vector< double, NDIM > &c1, const Vector< double, NDIM > &c2) const |
| Can we screen this function based on the bounding box information? More...
|
|
void | set_length_scale (double lo) |
| adapt the special level to resolve the smallest length scale More...
|
|
virtual Level | special_level () |
| Override this change level refinement for special points (default is 6) More...
|
|
virtual std::vector< Vector< double, NDIM > > | special_points () const |
| Override this to return list of special points to be refined more deeply. More...
|
|
virtual bool | supports_vectorized () const |
| Does the interface support a vectorized operator()? More...
|
|
template<typename T, std::size_t NDIM>
class madness::ElementaryInterface< T, NDIM >
ElementaryInterface (formerly FunctorInterfaceWrapper) interfaces a c-function.
hard-code your favorite function and interface it with this; Does only provide function values, no MRA coefficients. Care must be taken if the function we refer to is a singular function, and a on-demand function at the same time, since direct computation of coefficients via mraimpl::project might suffer from inaccurate quadrature.