32#ifndef MADNESS_MRA_OPERATOR_H__INCLUDED
33#define MADNESS_MRA_OPERATOR_H__INCLUDED
56 template<
typename T, std::
size_t NDIM>
59 template<
typename T, std::
size_t NDIM>
60 class SeparatedConvolution;
62 template<
typename T, std::
size_t NDIM>
65 template <
typename T,
typename R, std::
size_t NDIM, std::
size_t KDIM>
67 apply(
const SeparatedConvolution<T,KDIM>&
op,
const std::vector< Function<R,NDIM> >
f);
69 template<
typename T, std::
size_t NDIM>
70 std::vector<CCPairFunction<T,NDIM>>
apply(
const SeparatedConvolution<T,NDIM>&
op,
const std::vector<CCPairFunction<T,NDIM>>& argument);
72 template<
typename T, std::
size_t NDIM>
73 std::vector<CCPairFunction<T,NDIM>>
apply(
const SeparatedConvolution<T,NDIM/2>&
op,
const std::vector<CCPairFunction<T,NDIM>>& argument);
75 template<
typename T, std::
size_t NDIM>
76 CCPairFunction<T,NDIM>
apply(
const SeparatedConvolution<T,NDIM>&
op,
const CCPairFunction<T,NDIM>& argument);
78 template<
typename T, std::
size_t NDIM>
79 CCPairFunction<T,NDIM>
apply(
const SeparatedConvolution<T,NDIM/2>&
op,
const CCPairFunction<T,NDIM>& argument);
83 template <
typename Q, std::
size_t NDIM>
92 template <
typename Q, std::
size_t NDIM>
94 std::vector< SeparatedConvolutionInternal<Q,NDIM> >
muops;
138 template <
typename Q, std::
size_t NDIM>
154 std::array<KernelRange, NDIM>
range;
172 mutable std::vector< ConvolutionND<Q,NDIM> >
ops;
176 const std::vector<long>
vk;
177 const std::vector<long>
v2k;
178 const std::vector<Slice>
s0;
192 if (
p!=1 and
p!=2)
throw std::runtime_error(
"particle must be 1 or 2");
204 const std::vector<ConvolutionND<Q,NDIM>>&
get_ops()
const {
return ops; }
225 static inline std::pair<Tensor<Q>,
Tensor<Q>>
255 double hi = cell_width.
normf();
272 double max_lattice_spacing = 0;
275 max_lattice_spacing =
276 std::max(max_lattice_spacing, cell_width(
d));
280 fit.truncate_periodic_expansion(coeff, expnt, max_lattice_spacing,
285 return std::make_pair(coeff, expnt);
322 template <
typename T,
typename R>
333 for (std::size_t i=0; i<
NDIM; ++i) size *= dimk;
334 long dimi = size/dimk;
336 R* MADNESS_RESTRICT w1=work1.
ptr();
337 R* MADNESS_RESTRICT w2=work2.
ptr();
340 mTxmq_padding(dimi, trans[0].r, dimk, dimk, w1,
f.ptr(), trans[0].U);
342 mTxmq(dimi, trans[0].r, dimk, w1,
f.ptr(), trans[0].U, dimk);
345 size = trans[0].r * size / dimk;
347 for (std::size_t
d=1;
d<
NDIM; ++
d) {
351 mTxmq(dimi, trans[
d].r, dimk, w2, w1, trans[
d].U, dimk);
353 size = trans[
d].r * size / dimk;
363 for (std::size_t
d=0;
d<
NDIM; ++
d) {
365 dimi = size/trans[
d].r;
369 mTxmq(dimi, dimk, trans[
d].r, w2, w1, trans[
d].VT);
371 size = dimk*size/trans[
d].r;
385 template <
typename T,
typename R>
394 result2.
scale(mufac);
402 template <
typename T,
typename R>
420 for (std::size_t i=0; i<
NDIM; ++i) size *= dimk;
421 long dimi = size/dimk;
423 R* MADNESS_RESTRICT w1=work1.
ptr();
424 R* MADNESS_RESTRICT w2=work2.
ptr();
426 mTxmq(dimi, trans[0].r, dimk, w1,
f.ptr(), trans[0].U, dimk);
427 size = trans[0].r * size / dimk;
429 for (std::size_t
d=1;
d<
NDIM; ++
d) {
430 mTxmq(dimi, trans[
d].r, dimk, w2, w1, trans[
d].U, dimk);
431 size = trans[
d].r * size / dimk;
441 for (std::size_t
d=0;
d<
NDIM; ++
d) {
443 dimi = size/trans[
d].r;
444 mTxmq(dimi, dimk, trans[
d].r, w2, w1, trans[
d].VT);
445 size = dimk*size/trans[
d].r;
462 template <
typename T>
478 for (std::size_t
d=0;
d<
NDIM; ++
d) Rnorm *= ops_1d[
d]->Rnorm;
480 if (at.
r_term and (Rnorm > 1.e-20)) {
482 const auto tol_Rs = tol/(Rnorm*
NDIM);
489 if (
NDIM==1) break_even = long(0.5*twok);
490 else if (
NDIM==2) break_even = long(0.6*twok);
491 else if (
NDIM==3) break_even=long(0.65*twok);
492 else break_even=long(0.7*twok);
493 bool rank_is_zero =
false;
494 for (std::size_t
d=0;
d<
NDIM; ++
d) {
496 for (r=0; r<twok; ++r) {
497 if (ops_1d[
d]->Rs[r] < tol_Rs)
break;
499 if (r >= break_even) {
501 trans[
d].
U = ops_1d[
d]->R.ptr();
507 r = std::max(2L,r+(r&1L));
514 trans[
d].
U = ops_1d[
d]->RU.ptr();
515 trans[
d].
VT = ops_1d[
d]->RVT.ptr();
517 trans2[
d]=ops_1d[
d]->R;
528 for (std::size_t
d=0;
d<
NDIM; ++
d) Tnorm *= ops_1d[
d]->Tnorm;
530 if (at.
t_term and (Tnorm>0.0)) {
531 const auto tol_Ts = tol/(Tnorm*
NDIM);
534 if (
NDIM==1) break_even = long(0.5*
k);
535 else if (
NDIM==2) break_even = long(0.6*
k);
536 else if (
NDIM==3) break_even=long(0.65*
k);
537 else break_even=long(0.7*
k);
538 bool rank_is_zero =
false;
539 for (std::size_t
d=0;
d<
NDIM; ++
d) {
541 for (r=0; r<
k; ++r) {
542 if (ops_1d[
d]->Ts[r] < tol_Ts)
break;
544 if (r >= break_even) {
546 trans[
d].
U = ops_1d[
d]->T.ptr();
552 r = std::max(2L,r+(r&1L));
559 trans[
d].
U = ops_1d[
d]->TU.ptr();
560 trans[
d].
VT = ops_1d[
d]->TVT.ptr();
562 trans2[
d]=ops_1d[
d]->T;
573 template <
typename T>
590 for (std::size_t
d=0;
d<
NDIM; ++
d) Rnorm *= ops_1d[
d]->Rnorm;
591 if (Rnorm == 0.0)
return;
593 if (Rnorm > 1.e-20) {
595 tol = tol/(Rnorm*
NDIM);
605 for (std::size_t
d=0;
d<
NDIM; ++
d) {
621 trans2[
d]=ops_1d[
d]->R;
627 for (std::size_t
d=0;
d<
NDIM; ++
d) Tnorm *= ops_1d[
d]->Tnorm;
629 if (n > 0 and (Tnorm>1.e-20)) {
636 for (std::size_t
d=0;
d<
NDIM; ++
d) {
652 trans2[
d]=ops_1d[
d]->T;
672 double prodR=1.0, prodT=1.0;
673 for (std::size_t
d=0;
d<
NDIM; ++
d) {
674 prodR *=
ops[
d]->Rnormf;
675 prodT *=
ops[
d]->Tnormf;
682 double prod=1.0,
sum=0.0;
683 for (std::size_t
d=0;
d<
NDIM; ++
d) {
684 double a =
ops[
d]->NSnormf;
685 double b =
ops[
d]->Tnormf;
686 double aa = std::min(
a,
b);
687 double bb = std::max(
a,
b);
689 if (bb > 0.0)
sum +=(
aa/bb);
717 for (
size_t d=0;
d<
NDIM; ++
d) {
718 double dff_tmp = ops_1d[
d]->
N_diff;
719 double duu_tmp = ops_1d[
d]->
N_diff;
720 double udf_tmp = ops_1d[
d]->
N_diff;
723 for (
size_t dd=0; dd<
NDIM; ++dd) {
725 dff_tmp *= ops_1d[dd]->
N_F;
726 duu_tmp *= ops_1d[dd]->
N_up;
728 udf_tmp *= ops_1d[dd]->
N_F;
729 for (
size_t ddd=0; ddd<
NDIM; ++ddd) {
730 if (ddd!=dd) udf += udf_tmp * ops_1d[ddd]->
N_up;
741 for (
int i=1; i<static_cast<int>(
NDIM)-1; ++i)
factorial*=
double(i);
768 for (std::size_t
d=0;
d<
NDIM; ++
d) {
806 for (std::size_t
d=0;
d<
NDIM; ++
d) {
811 op.ops[
d] =
ops[
mu].getop(
d)->mod_nonstandard(op_key);
850 const double munorm =
op.muops[
mu].norm;
851 norm += munorm*munorm;
856 return data.getptr(n,
d);
874 for (
size_t i=0; i<
NDIM; ++i) t[i]=t[i]%2;
888 const double munorm =
op.muops[
mu].norm;
889 norm += munorm*munorm;
902 for (std::size_t
d=1;
d<
NDIM; ++
d) {
915 template<
typename T,
size_t FDIM>
932 for (
int i=0; i<
k; ++i) identity(i,i)=1.0;
938 for (
size_t ii=0; ii<
NDIM; ++ii) matrices[ii+
NDIM]=identity;
940 for (
size_t ii=0; ii<
NDIM; ++ii) matrices[ii]=identity;
958 template<
typename T,
size_t FDIM>
967 for (
size_t ii=0; ii<FDIM; ++ii) matrices[ii]=
h[key.
translation()[ii]%2];
978 for (
int d = 0;
d !=
NDIM; ++
d) {
979 for(
const auto &
op:
ops) {
991 for (
int d = 0;
d !=
NDIM; ++
d) {
992 for (
const auto &
op :
ops) {
994 ops[0].lattice_summed());
1017 ,
rank(argops.size())
1023 for (
unsigned int mu=0;
mu < argops.size(); ++
mu) {
1047 ,
rank(argops.size())
1068 range =
info.template range_as_array<NDIM>();
1090 ,
rank(coeff.dim(0))
1104 Q c = std::pow(sqrt(expnt(
mu)/
pi),
static_cast<int>(
NDIM));
1110 for (std::size_t
d=0;
d<
NDIM; ++
d) {
1134 ,
rank(coeff.dim(0))
1144 for (std::size_t
d=0;
d<
NDIM; ++
d) {
1146 std::shared_ptr<GaussianConvolution1D<double_complex> >
1159 timer_full.
print(
"op full tensor ");
1189 return getop(n,
d, source_key)->norm;
1199 template<
size_t FDIM>
1200 typename std::enable_if<FDIM!=NDIM, Key<NDIM> >
::type
1216 template<
size_t FDIM>
1217 typename std::enable_if<FDIM==NDIM, Key<NDIM> >
::type
1229 template <
typename T,
size_t FDIM>
1235 template <
typename T,
size_t FDIM>
1245 template <
typename T,
size_t LDIM>
1257 template <
typename T,
size_t LDIM>
1266 template<
typename argT>
1279 template <
typename T>
1294 if (coeff.
dim(0) ==
k) {
1310 tol = 0.01*tol/
rank;
1333 if (muop.
norm > tol) {
1335 Q fac =
ops[
mu].getfac();
1341 r(
s0).gaxpy(1.0,r0,1.0);
1361 template<
typename T>
1372 const std::vector<Slice> s00(coeff.
ndim(),
Slice(0,
k-1));
1392 tol = tol/
rank*0.01;
1400 for (
int r=0; r<coeff.
rank(); ++r) {
1420 Q fac =
ops[
mu].getfac();
1422 tol/
std::abs(fac), fac, work1, work2);
1427 final.get_svdtensor().ref_vector(
particle()-1)(s)=result;
1442 final.reduce_rank(tol2*0.5);
1457 template <
typename T>
1461 double tol,
double tol2)
const {
1474 if (coeff.
dim(0) ==
k) {
1505 std::list<GenTensor<T> > r_list;
1506 std::list<GenTensor<T> > r0_list;
1515 if (muop.
norm > tol) {
1530 Q fac =
ops[
mu].getfac();
1532 tol/
std::abs(fac), fac, work1, work2);
1536 r_list.push_back(r);
1537 r0_list.push_back(r0);
1546 if (r_list.size()>0) r_list.front()(
s0)+=result0;
1565 template<
typename T>
1569 double tol,
double tol2)
const {
1572 if (2*
NDIM==coeff.
ndim())
return 1.5;
1581 const double full_operator_cost=
pow(coeff.
dim(0),
NDIM+1);
1582 const double low_operator_cost=
pow(coeff.
dim(0),
NDIM/2+1);
1583 const double low_reduction_cost=
pow(coeff.
dim(0),
NDIM/2);
1585 double full_cost=0.0;
1586 double low_cost=0.0;
1588 long initial_rank=0;
1589 long final_rank=sqrt(coeff.
size())*0.05;
1595 if (muop.
norm > tol) {
1601 initial_rank+=nterms;
1603 full_cost+=full_operator_cost;
1606 low_cost=initial_rank*low_operator_cost + initial_rank*final_rank*low_reduction_cost;
1610 if (low_cost>0.0) ratio=full_cost/low_cost;
1626 const Key<NDIM>&
shift,
double tol,
bool do_R,
bool do_T)
const {
1628 if (not (do_R or do_T)) {
1629 print(
"no operator requested in make_tt_representation??");
1641 for (std::size_t
d=0;
d<
NDIM; ++
d) Rnorm *=
op->muops[
mu].ops[
d]->Rnorm;
1642 if (Rnorm>1.e-20) hi=
mu;
1643 if ((Rnorm<1.e-20) and (
mu<hi))
lo=
mu;
1648 long rank_eff=(hi-
lo);
1650 if (do_R and do_T) {
1665 for (
int mu=
lo, r=0;
mu<hi; ++
mu, ++r) {
1667 const Q fac =
ops[
mu].getfac();
1668 const Slice sr0(step*r, step*r, 0);
1669 const Slice sr1(step*r+step-1,step*r+step-1,0);
1670 const Slice s00(0,
k-1,1);
1673 cores[0](
_,
_ ,sr0)=muop.
ops[0]->R;
1674 for (std::size_t idim=1; idim<
NDIM-1; ++idim) {
1675 cores[idim](sr0,
_ ,
_ ,sr0)=muop.
ops[idim]->R;
1681 cores[0](s00,s00,sr1)=muop.
ops[0]->T;
1682 for (std::size_t idim=1; idim<
NDIM-1; ++idim) {
1683 cores[idim](sr1,s00,s00,sr1)=muop.
ops[idim]->T;
1685 cores[
NDIM-1](sr1,s00,s00)=muop.
ops[
NDIM-1]->T*(-fac);
1736 MADNESS_EXCEPTION(
"unknown combination of SeparatedConvolutions: feel free to extend in operator.h",1);
1757 if (left and right) {
1758 return combine(*left, *right);
1782 double hi = cell_width.
normf();
1786 if (lattice_sum_any) {
1794 if (lattice_sum_any) {
1795 fit.truncate_periodic_expansion(coeff, expnt, cell_width.
max(),
true);
1829 template <std::
size_t NDIM>
1831 SeparatedConvolution<double,NDIM>
1836 if (world.
rank()==0)
print(
"the accuracy in BSHOperator is too small, tighten the threshold",eps);
1843 template <std::
size_t NDIM>
1845 SeparatedConvolution<double,NDIM>*
1850 if (world.
rank()==0)
print(
"the accuracy in BSHOperator is too small, tighten the threshold",eps);
1858 static inline SeparatedConvolution<double,3>
1878 double hi = cell_width.
normf();
1881 if (lattice_sum_any) {
1889 if (lattice_sum_any) {
1890 fit.truncate_periodic_expansion(coeff, expnt, cell_width.
max(),
false);
1908 double hi = cell_width.
normf();
1911 if (lattice_sum_any) {
1919 if (lattice_sum_any) {
1920 fit.truncate_periodic_expansion(coeff, expnt, cell_width.
max(),
false);
1927 static inline SeparatedConvolution<double,3>
1935 double mu,
double lo,
double eps,
1942 double mu,
double lo,
double eps,
1949 template<std::
size_t NDIM=3>
1951 double mu,
double lo,
double eps,
1960 template<std::
size_t NDIM>
1962 double mu,
double lo=0.0,
double eps=0.0,
1971 template<std::
size_t NDIM>
1973 double mu,
double lo=0.0,
double eps=0.0,
1982 template<std::
size_t NDIM>
1984 double mu,
double lo,
double eps,
1993 double mu,
double lo,
double eps,
2003 double mu,
double lo,
double eps,
2014 static inline SeparatedConvolution<double,3>
2025 static inline SeparatedConvolution<double,3>*
2037 static inline SeparatedConvolution<double,3>*
2049 static inline SeparatedConvolution<double,3>
2064 double exponent = 1.0/(2.0*eps);
2066 exponents(0
L) = exponent;
2067 coeffs(0
L)=
pow(exponent/M_PI,0.5*3.0);
2073 template<std::
size_t NDIM>
2079 double exponent = 1.0/(2.0*eps);
2081 exponents(0
L) = exponent;
2082 coeffs(0
L)=
pow(exponent/M_PI,0.5*
NDIM);
2096 double hi = cell_width.
normf();
2099 if (lattice_sum_any) {
2107 if (lattice_sum_any) {
2108 fit.truncate_periodic_expansion(coeff, expnt, cell_width.
max(),
false);
2121 std::vector< std::shared_ptr< SeparatedConvolution<double,3> > >
2131 double hi = width.
normf();
2134 if (lattice_sum_any) {
2142 if (lattice_sum_any) {
2143 fit.truncate_periodic_expansion(coeff, expnt, width.
max(),
true);
2146 int rank = coeff.
dim(0);
2148 std::vector<real_convolution_3d_ptr> gradG(3);
2151 std::vector<ConvolutionND<double, 3>> ops(rank);
2152 for (
int mu = 0;
mu < rank;
mu++) {
2154 double c = std::pow(sqrt(expnt(
mu) /
pi), 3);
2155 ops[
mu].setfac(coeff(
mu) /
c / width[
dir]);
2157 for (
int d = 0;
d < 3;
d++) {
2160 k, expnt(
mu) * width[
d] * width[
d], 0,
2164 k, expnt(
mu) * width[
dir] * width[
dir], 1,
2180 std::vector< std::shared_ptr< SeparatedConvolution<double,3> > >
2191 double hi = width.
normf();
2194 if (lattice_sum_any) {
2202 if (lattice_sum_any) {
2203 fit.truncate_periodic_expansion(coeff, expnt, width.
max(),
true);
2206 int rank = coeff.
dim(0);
2208 std::vector<real_convolution_3d_ptr> gradG(3);
2211 std::vector<ConvolutionND<double, 3>> ops(rank);
2212 for (
int mu = 0;
mu < rank;
mu++) {
2214 double c = std::pow(sqrt(expnt(
mu) /
pi), 3);
2215 ops[
mu].setfac(coeff(
mu) /
c / width[
dir]);
2217 for (
int d = 0;
d < 3;
d++) {
2220 k, expnt(
mu) * width[
d] * width[
d], 0,
2224 k, expnt(
mu) * width[
dir] * width[
dir], 1,
2237 template <
class Archive,
class T, std::
size_t NDIM>
2246 template <
class Archive,
class T, std::
size_t NDIM>
double q(double t)
Definition DKops.h:18
Provides routines for internal use optimized for aligned data.
long dim(int i) const
Returns the size of dimension i.
Definition basetensor.h:147
long ndim() const
Returns the number of dimensions in the tensor.
Definition basetensor.h:144
Provides the common functionality/interface of all 1D convolutions.
Definition convolution1d.h:258
Array of 1D convolutions (one / dimension)
Definition convolution1d.h:584
Holds displacements for applying operators to avoid replicating for all operators.
Definition displacements.h:51
const std::vector< Key< NDIM > > & get_disp(Level n, const array_of_bools< NDIM > &kernel_lattice_sum_axes)
Definition displacements.h:211
FunctionCommonData holds all Function data common for given k.
Definition function_common_data.h:52
Tensor< double > h0
Definition function_common_data.h:105
Tensor< double > h1
Definition function_common_data.h:105
FunctionDefaults holds default paramaters as static class members.
Definition funcdefaults.h:100
static const Tensor< double > & get_cell_width()
Returns the width of each user cell dimension.
Definition funcdefaults.h:369
A multiresolution adaptive numerical function.
Definition mra.h:139
static GFit BSHFit(double mu, double lo, double hi, double eps, bool prnt=false)
return a fit for the bound-state Helmholtz function
Definition gfit.h:117
static GFit CoulombFit(double lo, double hi, double eps, bool prnt=false)
return a fit for the Coulomb function
Definition gfit.h:102
1D convolution with (derivative) Gaussian; coeff and expnt given in simulation coordinates [0,...
Definition convolution1d.h:734
Definition lowranktensor.h:59
long dim(const int i) const
return the number of entries in dimension i
Definition lowranktensor.h:391
long ndim() const
Definition lowranktensor.h:386
constexpr bool is_full_tensor() const
Definition gentensor.h:224
void reduce_rank(const double &eps)
Definition gentensor.h:217
long rank() const
Definition gentensor.h:212
long size() const
Definition lowranktensor.h:482
SVDTensor< T > & get_svdtensor()
Definition gentensor.h:228
const BaseTensor * ptr() const
might return a NULL pointer!
Definition lowranktensor.h:709
IsSupported< TensorTypeData< Q >, GenTensor< T > & >::type scale(Q fac)
Inplace multiplication by scalar of supported type (legacy name)
Definition lowranktensor.h:426
constexpr bool is_svd_tensor() const
Definition gentensor.h:222
Key is the index for a node of the 2^NDIM-tree.
Definition key.h:68
Key< NDIM+LDIM > merge_with(const Key< LDIM > &rhs) const
merge with other key (ie concatenate), use level of rhs, not of this
Definition key.h:398
const Vector< Translation, NDIM > & translation() const
Definition key.h:166
void break_apart(Key< LDIM > &key1, Key< KDIM > &key2) const
break key into two low-dimensional keys
Definition key.h:336
Tensor< T > & ref_vector(const unsigned int &idim)
return reference to one of the vectors F
Definition srconf.h:530
int dim_per_vector(int idim) const
return the number of physical dimensions
Definition srconf.h:665
static int max_sigma(const double &thresh, const long &rank, const Tensor< double > &w)
Definition srconf.h:109
Definition SVDTensor.h:42
Convolutions in separated form (including Gaussian)
Definition operator.h:139
Timer timer_low_transf
Definition operator.h:165
bool destructive_
destroy the argument or restore it (expensive for 6d functions)
Definition operator.h:159
GenTensor< TENSOR_RESULT_TYPE(T, Q)> apply2(const Key< NDIM > &source, const Key< NDIM > &shift, const GenTensor< T > &coeff, double tol, double tol2) const
apply this operator on coefficients in low rank form
Definition operator.h:1458
std::array< KernelRange, NDIM > range
kernel range is along axis d is limited by range[d] if it's nonnull
Definition operator.h:154
const array_of_bools< NDIM > & lattice_summed() const
Definition operator.h:1178
int particle_
must only be 1 or 2
Definition operator.h:158
void muopxv_fast2(Level n, const ConvolutionData1D< Q > *const ops_1d[NDIM], const GenTensor< T > &f, const GenTensor< T > &f0, GenTensor< TENSOR_RESULT_TYPE(T, Q)> &result, GenTensor< TENSOR_RESULT_TYPE(T, Q)> &result0, double tol, const Q mufac, GenTensor< TENSOR_RESULT_TYPE(T, Q)> &work1, GenTensor< TENSOR_RESULT_TYPE(T, Q)> &work2) const
Apply one of the separated terms, accumulating into the result.
Definition operator.h:574
const double & gamma() const
Definition operator.h:200
GenTensor< TENSOR_RESULT_TYPE(T, Q)> apply2_lowdim(const Key< NDIM > &source, const Key< NDIM > &shift, const GenTensor< T > &coeff, double tol, double tol2) const
apply this operator on only 1 particle of the coefficients in low rank form
Definition operator.h:1362
static std::pair< Tensor< Q >, Tensor< Q > > make_coeff_for_operator(World &world, double mu, double lo, double eps, OpType type, const array_of_bools< NDIM > &lattice_summed)
Definition operator.h:226
std::vector< ConvolutionND< Q, NDIM > > ops
ConvolutionND keeps data for 1 term, all dimensions, 1 displacement.
Definition operator.h:172
Function< TENSOR_RESULT_TYPE(T, Q), LDIM+LDIM > operator()(const Function< T, LDIM > &f1, const Function< Q, LDIM > &f2) const
apply this operator on a separable function f(1,2) = f(1) f(2)
Definition operator.h:1247
const SeparatedConvolutionData< Q, NDIM > * getop(Level n, const Key< NDIM > &d, const Key< NDIM > &source) const
get the data for all terms and all dimensions for one displacement
Definition operator.h:821
void set_domain_periodicity(const array_of_bools< NDIM > &domain_is_periodic)
Definition operator.h:1183
const double & mu() const
Definition operator.h:201
double munorm2(Level n, const ConvolutionData1D< Q > *ops[]) const
Definition operator.h:661
const bool & destructive() const
Definition operator.h:198
Timer timer_stats_accumulate
Definition operator.h:167
SimpleCache< SeparatedConvolutionData< Q, NDIM >, NDIM > data
cache for all terms, dims and displacements
Definition operator.h:181
std::enable_if< FDIM!=NDIM, Key< NDIM > >::type get_source_key(const Key< FDIM > key) const
return that part of a hi-dim key that serves as the base for displacements of this operator
Definition operator.h:1201
double munorm2_ns(Level n, const ConvolutionData1D< Q > *ops[]) const
Definition operator.h:669
std::enable_if< FDIM==NDIM, Key< NDIM > >::type get_source_key(const Key< FDIM > key) const
return that part of a hi-dim key that serves as the base for displacements of this operator
Definition operator.h:1218
virtual ~SeparatedConvolution()
Definition operator.h:1155
void muopxv_fast(ApplyTerms at, const ConvolutionData1D< Q > *const ops_1d[NDIM], const Tensor< T > &f, const Tensor< T > &f0, Tensor< TENSOR_RESULT_TYPE(T, Q)> &result, Tensor< TENSOR_RESULT_TYPE(T, Q)> &result0, const double tol, const Q mufac, Tensor< TENSOR_RESULT_TYPE(T, Q)> &work1, Tensor< TENSOR_RESULT_TYPE(T, Q)> &work2) const
Apply one of the separated terms, accumulating into the result.
Definition operator.h:463
SimpleCache< SeparatedConvolutionData< Q, NDIM >, 2 *NDIM > mod_data
cache for all terms, dims and displacements
Definition operator.h:182
const array_of_bools< NDIM > & domain_is_periodic() const
Definition operator.h:1180
argT operator()(const argT &argument) const
apply this onto another suitable argument, returning the same type
Definition operator.h:1267
Timer timer_full
Definition operator.h:164
static std::pair< Tensor< double >, Tensor< double > > make_coeff_for_operator(World &world, OperatorInfo &info, const array_of_bools< NDIM > &lattice_summed)
Definition operator.h:250
SeparatedConvolution< Q, NDIM > & set_particle(const int p)
Definition operator.h:191
SeparatedConvolution(World &world, const std::vector< std::shared_ptr< Convolution1D< Q > > > &argops, long k=FunctionDefaults< NDIM >::get_k(), bool doleaves=false)
Definition operator.h:1004
Function< TENSOR_RESULT_TYPE(T, Q), LDIM+LDIM > operator()(const std::vector< Function< T, LDIM > > &f1, const std::vector< Function< Q, LDIM > > &f2) const
apply this operator on a sum of separable functions f(1,2) = \sum_i f_i(1) f_i(2)
Definition operator.h:1259
void init_lattice_summed()
Definition operator.h:989
Q opT
The apply function uses this to infer resultT=opT*inputT.
Definition operator.h:142
SeparatedConvolution(World &world, const OperatorInfo info1, const array_of_bools< NDIM > &lattice_summed=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k(), bool doleaves=false)
Constructor for Gaussian Convolutions (mostly for backward compatability)
Definition operator.h:1058
const SeparatedConvolutionInternal< Q, NDIM > getmuop(int mu, Level n, const Key< NDIM > &disp) const
get the transformation matrices for 1 term and all dimensions and one displacement
Definition operator.h:765
const SeparatedConvolutionData< Q, NDIM > * getop_ns(Level n, const Key< NDIM > &d) const
get the data for all terms and all dimensions for one displacement
Definition operator.h:835
const std::vector< long > v2k
Definition operator.h:177
const std::array< KernelRange, NDIM > & get_range() const
Definition operator.h:205
const int get_k() const
Definition operator.h:203
Function< TENSOR_RESULT_TYPE(T, Q), FDIM > operator()(const Function< T, FDIM > &f) const
apply this operator on a function f
Definition operator.h:1230
bool doleaves
If should be applied to leaf coefficients ... false by default.
Definition operator.h:146
void print_timer() const
Definition operator.h:1157
SeparatedConvolution(World &world, const std::vector< ConvolutionND< Q, NDIM > > &argops, long k=FunctionDefaults< NDIM >::get_k(), bool doleaves=false)
Definition operator.h:1033
const std::vector< Key< NDIM > > & get_disp(Level n) const
Definition operator.h:1173
void apply_transformation3(const Tensor< T > trans2[NDIM], const Tensor< T > &f, const Q mufac, Tensor< R > &result) const
accumulate into result
Definition operator.h:386
static SeparatedConvolution< Q, NDIM > combine(const SeparatedConvolution< Q, NDIM > &left, const SeparatedConvolution< Q, NDIM > &right)
combine 2 convolution operators to one
Definition operator.h:1743
const std::vector< long > vk
Definition operator.h:176
double norm(Level n, const Key< NDIM > &d, const Key< NDIM > &source_key) const
return the operator norm for all terms, all dimensions and 1 displacement
Definition operator.h:1186
TensorTrain< double > make_tt_representation(const Key< NDIM > &source, const Key< NDIM > &shift, double tol, bool do_R, bool do_T) const
construct the tensortrain representation of the operator
Definition operator.h:1625
void reset_timer() const
Definition operator.h:1165
static OperatorInfo combine_OT(const SeparatedConvolution< Q, NDIM > &left, const SeparatedConvolution< Q, NDIM > &right)
return operator type and other info of the combined operator (e.g. fg = f(1,2)* g(1,...
Definition operator.h:1706
GenTensor< T > upsample(const Key< FDIM > &key, const GenTensor< T > &coeff) const
upsample the sum coefficients of level 1 to sum coeffs on level n+1
Definition operator.h:959
bool print_timings
Definition operator.h:160
Timer timer_low_accumulate
Definition operator.h:166
double estimate_costs(const Key< NDIM > &source, const Key< NDIM > &shift, const GenTensor< T > &coeff, double tol, double tol2) const
estimate the ratio of cost of full rank versus low rank
Definition operator.h:1566
bool range_restricted() const
Definition operator.h:206
Tensor< TENSOR_RESULT_TYPE(T, Q)> apply(const Key< NDIM > &source, const Key< NDIM > &shift, const Tensor< T > &coeff, double tol) const
apply this operator on coefficients in full rank form
Definition operator.h:1280
const std::vector< Slice > s0
Definition operator.h:178
array_of_bools< NDIM > lattice_summed_
Definition operator.h:150
void apply_transformation2(Level n, long dimk, double tol, const Tensor< T > trans2[NDIM], const GenTensor< T > &f, GenTensor< R > &work1, GenTensor< R > &work2, const Q mufac, GenTensor< R > &result) const
don't accumulate, since we want to do this at apply()
Definition operator.h:403
const int & particle() const
Definition operator.h:190
std::vector< Function< TENSOR_RESULT_TYPE(T, Q), FDIM > > operator()(const std::vector< Function< T, FDIM > > &f) const
apply this on a vector of functions
Definition operator.h:1236
const int get_rank() const
Definition operator.h:202
const bool & modified() const
Definition operator.h:187
const FunctionCommonData< Q, NDIM > & cdata
Definition operator.h:174
bool & modified()
Definition operator.h:186
const int k
Definition operator.h:173
friend SeparatedConvolution< Q, NDIM > combine(const std::shared_ptr< SeparatedConvolution< Q, NDIM > > left, const std::shared_ptr< SeparatedConvolution< Q, NDIM > > right)
combine 2 convolution operators to one
Definition operator.h:1754
OperatorInfo info
Definition operator.h:144
SeparatedConvolution(World &world, const Tensor< Q > &coeff, const Tensor< double > &expnt, double lo, double thresh, const array_of_bools< NDIM > &lattice_summed=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k(), bool doleaves=false, double mu=0.0)
Constructor for Gaussian Convolutions (mostly for backward compatability)
Definition operator.h:1075
array_of_bools< NDIM > domain_is_periodic_
Definition operator.h:152
Key< NDIM > keyT
Definition operator.h:162
void init_range()
Definition operator.h:976
static const size_t opdim
Definition operator.h:163
bool & destructive()
Definition operator.h:197
void apply_transformation(long dimk, const Transformation trans[NDIM], const Tensor< T > &f, Tensor< R > &work1, Tensor< R > &work2, const Q mufac, Tensor< R > &result) const
Definition operator.h:323
void initialize(const Tensor< Q > &coeff, const Tensor< double > &expnt, std::array< KernelRange, NDIM > range={})
Definition operator.h:1099
void check_cubic()
Definition operator.h:898
bool modified_
use modified NS form
Definition operator.h:157
int rank
Definition operator.h:175
GenTensor< T > partial_upsample(const Key< FDIM > &key, const GenTensor< T > &coeff, const int particle) const
upsample some of the dimensions of coeff to its child indicated by key
Definition operator.h:916
double munorm2_modified(Level n, const ConvolutionData1D< Q > *ops_1d[]) const
Definition operator.h:702
int & particle()
Definition operator.h:189
SeparatedConvolution(World &world, Vector< double, NDIM > args, const Tensor< Q > &coeff, const Tensor< double > &expnt, const array_of_bools< NDIM > &lattice_summed=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k(), bool doleaves=false)
WSTHORNTON Constructor for Gaussian Convolutions (mostly for backward compatability)
Definition operator.h:1118
static bool can_combine(const SeparatedConvolution< Q, NDIM > &left, const SeparatedConvolution< Q, NDIM > &right)
Definition operator.h:1701
const std::vector< ConvolutionND< Q, NDIM > > & get_ops() const
Definition operator.h:204
const SeparatedConvolutionData< Q, NDIM > * getop_modified(Level n, const Key< NDIM > &disp, const Key< NDIM > &source) const
get the data for all terms and all dimensions for one displacement (modified NS form)
Definition operator.h:869
const SeparatedConvolutionInternal< Q, NDIM > getmuop_modified(int mu, Level n, const Key< NDIM > &disp, const Key< NDIM > &source) const
get the transformation matrices for 1 term and all dimensions and one displacement
Definition operator.h:794
Simplified interface around hash_map to cache stuff for 1D.
Definition simplecache.h:46
A slice defines a sub-range or patch of a dimension.
Definition slice.h:103
Definition tensortrain.h:123
std::enable_if<!std::is_arithmetic< R >::value, void >::type truncate(double eps)
recompress and truncate this TT representation
Definition tensortrain.h:883
TensorTrain< T > & make_operator()
convert this into an operator representation (r,k',k,r)
Definition tensortrain.h:1188
TensorTrain< T > & make_tensor()
convert this into a tensor representation (r,k,r)
Definition tensortrain.h:1176
A tensor is a multidimensional array.
Definition tensor.h:317
float_scalar_type normf() const
Returns the Frobenius norm of the tensor.
Definition tensor.h:1726
T * ptr()
Returns a pointer to the internal data.
Definition tensor.h:1824
IsSupported< TensorTypeData< Q >, Tensor< T > & >::type scale(Q x)
Inplace multiplication by scalar of supported type (legacy name)
Definition tensor.h:686
T max(long *ind=0) const
Return the maximum value (and if ind is non-null, its index) in the Tensor.
Definition tensor.h:1703
Definition function_common_data.h:169
void print(std::string line="") const
print timer
Definition function_common_data.h:216
void accumulate(const double time) const
accumulate timer
Definition function_common_data.h:183
void reset() const
Definition function_common_data.h:210
A simple, fixed dimension vector.
Definition vector.h:64
Implements most parts of a globally addressable object (via unique ID).
Definition world_object.h:364
World & get_world() const
Returns a reference to the world.
Definition world_object.h:717
World & world
The World this object belongs to. (Think globally, act locally).
Definition world_object.h:381
void process_pending()
To be called from derived constructor to process pending messages.
Definition world_object.h:656
A parallel world class.
Definition world.h:132
ProcessID rank() const
Returns the process rank in this World (same as MPI_Comm_rank()).
Definition world.h:320
unsigned long id() const
Definition world.h:315
syntactic sugar for std::array<bool, N>
Definition array_of_bools.h:19
bool any() const
Definition array_of_bools.h:38
Defines common mathematical and physical constants.
Computes most matrix elements over 1D operators (including Gaussians)
static const double R
Definition csqrt.cc:46
double(* f1)(const coord_3d &)
Definition derivatives.cc:55
char * p(char *buf, const char *name, int k, int initial_level, double thresh, int order)
Definition derivatives.cc:72
double(* f2)(const coord_3d &)
Definition derivatives.cc:56
static double lo
Definition dirac-hatom.cc:23
static double shift
Definition dirac-hatom.cc:19
fit isotropic functions to a set of Gaussians with controlled precision
auto T(World &world, response_space &f) -> response_space
Definition global_functions.cc:34
static const double v
Definition hatom_sf_dirac.cc:20
Tensor< double > op(const Tensor< double > &x)
Definition kain.cc:508
static double pow(const double *a, const double *b)
Definition lda.h:74
#define max(a, b)
Definition lda.h:51
#define MADNESS_CHECK(condition)
Check a condition — even in a release build the condition is always evaluated so it can have side eff...
Definition madness_exception.h:182
#define MADNESS_EXCEPTION(msg, value)
Macro for throwing a MADNESS exception.
Definition madness_exception.h:119
#define MADNESS_ASSERT(condition)
Assert a condition that should be free of side-effects since in release builds this might be a no-op.
Definition madness_exception.h:134
constexpr double pi
Mathematical constant .
Definition constants.h:48
Namespace for all elements and tools of MADNESS.
Definition DFParameters.h:10
array_of_bools< NDIM > lattice_sum()
Definition bc.h:231
static SeparatedConvolution< double, 3 > BSHOperator3D(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with exp(-mu*r)/(4*pi*r) in 3D.
Definition operator.h:1859
static SeparatedConvolution< double, 3 > * SlaterF12sqOperatorPtr(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Definition operator.h:1941
static SeparatedConvolution< double, NDIM > * GaussOperatorPtr(World &world, double mu, double lo=0.0, double eps=0.0, const array_of_bools< NDIM > &lattice_sum=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k())
Factory function generating separated kernel for convolution with exp(-mu*r*r) in 3D.
Definition operator.h:1972
std::shared_ptr< real_convolution_3d > real_convolution_3d_ptr
Definition functypedefs.h:150
static double cpu_time()
Returns the cpu time in seconds relative to an arbitrary origin.
Definition timers.h:127
static SeparatedConvolution< double, NDIM > BSHOperator(World &world, double mu, double lo, double eps, const array_of_bools< NDIM > &lattice_sum=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k())
Factory function generating separated kernel for convolution with BSH kernel in general NDIM.
Definition operator.h:1832
static SeparatedConvolution< double, 3 > * SlaterOperatorPtr(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Definition operator.h:1992
static SeparatedConvolution< double, 3 > * SlaterF12OperatorPtr(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with (1 - exp(-mu*r))/(2 mu) in 3D.
Definition operator.h:2002
SeparatedConvolution< double, 3 > real_convolution_3d
Definition functypedefs.h:136
GenTensor< TENSOR_RESULT_TYPE(R, Q)> general_transform(const GenTensor< R > &t, const Tensor< Q > c[])
Definition gentensor.h:274
static SeparatedConvolution< double, 3 > * CoulombOperatorPtr(World &world, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with 1/r in 3D.
Definition operator.h:1818
static SeparatedConvolution< double_complex, 3 > PeriodicBSHOperator3D(World &world, Vector< double, 3 > args, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with exp(-mu*r)/(4*pi*r) in 3D.
Definition operator.h:1868
static std::vector< std::shared_ptr< SeparatedConvolution< double, 3 > > > GradCoulombOperator(World &world, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating operator for convolution with grad(1/r) in 3D.
Definition operator.h:2122
void fast_transpose(long n, long m, const T *a, T *MADNESS_RESTRICT b)
a(n,m) --> b(m,n) ... optimized for smallish matrices
Definition convolution1d.h:70
static SeparatedConvolution< double, 3 > SlaterF12Operator(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Definition operator.h:1928
static SeparatedConvolution< double, NDIM > GaussOperator(World &world, double mu, double lo=0.0, double eps=0.0, const array_of_bools< NDIM > &lattice_sum=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k())
Factory function generating separated kernel for convolution with exp(-mu*r*r)
Definition operator.h:1961
int64_t Translation
Definition key.h:56
static SeparatedConvolution< double, 3 > CoulombOperator(World &world, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with 1/r in 3D.
Definition operator.h:1805
static SeparatedConvolution< double, 3 > F2GOperator(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with (1/(2 mu)*(1 - exp(-mu*r)))^2/r in ...
Definition operator.h:2050
static std::vector< std::shared_ptr< SeparatedConvolution< double, 3 > > > GradBSHOperator(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating operator for convolution with grad(bsh) in 3D.
Definition operator.h:2181
void mTxmq_padding(long dimi, long dimj, long dimk, long ext_b, cT *c, const aT *a, const bT *b)
Definition mtxmq.h:96
static SeparatedConvolution< double, 3 > SmoothingOperator3D(World &world, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Definition operator.h:2059
static SeparatedConvolution< double, NDIM > SmoothingOperator(World &world, double eps, const array_of_bools< NDIM > &lattice_sum=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k())
Definition operator.h:2074
static const Slice _(0,-1, 1)
static SeparatedConvolution< double, 3 > * F2GOperatorPtr(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with (1/(2 mu)*(1 - exp(-mu*r)))^2/r in ...
Definition operator.h:2038
int Level
Definition key.h:57
OpType
operator types
Definition operatorinfo.h:11
@ OT_FG12
1-exp(-r)
Definition operatorinfo.h:18
@ OT_SLATER
1/r
Definition operatorinfo.h:15
@ OT_GAUSS
exp(-r)
Definition operatorinfo.h:16
@ OT_BSH
(1-exp(-r))^2/r = 1/r + exp(-2r)/r - 2 exp(-r)/r
Definition operatorinfo.h:21
@ OT_F12
exp(-r2)
Definition operatorinfo.h:17
@ OT_F212
(1-exp(-r))/r
Definition operatorinfo.h:19
@ OT_UNDEFINED
Definition operatorinfo.h:12
@ OT_G12
indicates the identity
Definition operatorinfo.h:14
@ OT_F2G12
(1-exp(-r))^2
Definition operatorinfo.h:20
static SeparatedConvolution< double, 3 > * FGOperatorPtr(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with 1/(2 mu)*(1 - exp(-mu*r))/r in 3D.
Definition operator.h:2026
static SeparatedConvolution< double, 3 > SlaterF12sqOperator(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Definition operator.h:1934
void print(const T &t, const Ts &... ts)
Print items to std::cout (items separated by spaces) and terminate with a new line.
Definition print.h:225
response_space apply(World &world, std::vector< std::vector< std::shared_ptr< real_convolution_3d > > > &op, response_space &f)
Definition basic_operators.cc:39
TensorType
low rank representations of tensors (see gentensor.h)
Definition gentensor.h:120
@ TT_2D
Definition gentensor.h:120
NDIM & f
Definition mra.h:2451
static SeparatedConvolution< double, NDIM > * BSHOperatorPtr(World &world, double mu, double lo, double eps, const array_of_bools< NDIM > &lattice_sum=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k())
Factory function generating separated kernel for convolution with BSH kernel in general NDIM.
Definition operator.h:1846
GenTensor< T > reduce(std::list< GenTensor< T > > &addends, double eps, bool are_optimal=false)
add all the GenTensors of a given list
Definition gentensor.h:246
static SeparatedConvolution< double, NDIM > SlaterOperator(World &world, double mu, double lo, double eps, const array_of_bools< NDIM > &lattice_sum=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k())
Factory function generating separated kernel for convolution with exp(-mu*r) in 3D.
Definition operator.h:1950
static SeparatedConvolution< double, 3 > FGOperator(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with 1/(2 mu)*(1 - exp(-mu*r))/r in 3D.
Definition operator.h:2015
std::string type(const PairType &n)
Definition PNOParameters.h:18
static SeparatedConvolution< double, 3 > * BSHOperatorPtr3D(World &world, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with exp(-mu*r)/(4*pi*r) in 3D.
Definition operator.h:2089
static SeparatedConvolution< double_complex, 3 > * PeriodicBSHOperatorPtr3D(World &world, Vector< double, 3 > args, double mu, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with exp(-mu*r)/(4*pi*r) in 3D.
Definition operator.h:1898
static SeparatedConvolution< double, NDIM > * SlaterOperatorPtr_ND(World &world, double mu, double lo, double eps, const array_of_bools< NDIM > &lattice_sum=FunctionDefaults< NDIM >::get_bc().is_periodic(), int k=FunctionDefaults< NDIM >::get_k())
Definition operator.h:1983
static SeparatedConvolution< double_complex, 3 > PeriodicHFExchangeOperator(World &world, Vector< double, 3 > args, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with 1/r in 3D.
Definition operator.h:1775
Function< T, NDIM > copy(const Function< T, NDIM > &f, const std::shared_ptr< WorldDCPmapInterface< Key< NDIM > > > &pmap, bool fence=true)
Create a new copy of the function with different distribution and optional fence.
Definition mra.h:2037
void mTxmq(long dimi, long dimj, long dimk, T *MADNESS_RESTRICT c, const T *a, const T *b, long ldb=-1)
Matrix = Matrix transpose * matrix ... MKL interface version.
Definition mxm.h:257
static const string dir
Definition corepotential.cc:249
static void aligned_axpy(long n, T *MADNESS_RESTRICT a, const T *MADNESS_RESTRICT b, Q s)
Definition aligned.h:75
static long abs(long a)
Definition tensor.h:218
const double mu
Definition navstokes_cosines.cc:95
static const double b
Definition nonlinschro.cc:119
static const double d
Definition nonlinschro.cc:121
static const double a
Definition nonlinschro.cc:118
double Q(double a)
Definition relops.cc:20
static const double c
Definition relops.cc:10
static const double L
Definition rk.cc:46
static const double thresh
Definition rk.cc:45
static const long k
Definition rk.cc:44
Definition test_ccpairfunction.cc:22
!!! Note that if Rnormf is zero then ALL of the tensors are empty
Definition convolution1d.h:162
double N_up
Definition convolution1d.h:173
double N_F
the norms according to Beylkin 2008, Eq. (21) ff
Definition convolution1d.h:173
double N_diff
Definition convolution1d.h:173
Definition convolution1d.h:990
Definition operatorinfo.h:58
double hi
Definition operatorinfo.h:67
OpType type
introspection
Definition operatorinfo.h:66
double mu
some introspection
Definition operatorinfo.h:63
std::vector< KernelRange > range
Definition operatorinfo.h:68
std::optional< bool > truncate_lowexp_gaussians
Definition operatorinfo.h:70
SeparatedConvolutionData keeps data for all terms, all dimensions.
Definition operator.h:93
std::vector< SeparatedConvolutionInternal< Q, NDIM > > muops
Definition operator.h:94
SeparatedConvolutionData(int rank)
Definition operator.h:97
double norm
Definition operator.h:95
SeparatedConvolutionData(const SeparatedConvolutionData< Q, NDIM > &q)
Definition operator.h:98
double norm
Definition operator.h:85
const ConvolutionData1D< Q > * ops[NDIM]
Definition operator.h:86
laziness for calling lists: which terms to apply
Definition operator.h:211
bool t_term
Definition operator.h:214
bool r_term
Definition operator.h:213
bool any_terms() const
Definition operator.h:215
ApplyTerms()
Definition operator.h:212
static void load(const Archive &ar, const SeparatedConvolution< T, NDIM > *&ptr)
Definition operator.h:2239
Default load of an object via serialize(ar, t).
Definition archive.h:666
static void store(const Archive &ar, const SeparatedConvolution< T, NDIM > *const &ptr)
Definition operator.h:2248
Default store of an object via serialize(ar, t).
Definition archive.h:611
Definition lowrankfunction.h:332
void doit(World &world)
Definition tdse.cc:921
Prototypes for a partial interface from Tensor to LAPACK.
int factorial(int n)
Definition test_BSHApply.cc:14
AtomicInt sum
Definition test_atomicint.cc:46
void e()
Definition test_sig.cc:75
double aa
Definition testbsh.cc:68
static const double pi
Definition testcosine.cc:6
std::vector< double > fit(size_t m, size_t n, const std::vector< double > N, const std::vector< double > &f)
Definition testfuns.cc:36
constexpr std::size_t NDIM
Definition testgconv.cc:54
double h(const coord_1d &r)
Definition testgconv.cc:175
double source(const coordT &r)
Definition testperiodic.cc:48
#define TENSOR_RESULT_TYPE(L, R)
This macro simplifies access to TensorResultType.
Definition type_data.h:205
#define PROFILE_MEMBER_FUNC(classname)
Definition worldprofile.h:210