32#ifndef MADNESS_MRA_MRA_H__INCLUDED
33#define MADNESS_MRA_MRA_H__INCLUDED
48#define FUNCTION_INSTANTIATE_1
49#define FUNCTION_INSTANTIATE_2
50#define FUNCTION_INSTANTIATE_3
51#if !defined(HAVE_IBMBGP) || !defined(HAVE_IBMBGQ)
52#define FUNCTION_INSTANTIATE_4
53#define FUNCTION_INSTANTIATE_5
54#define FUNCTION_INSTANTIATE_6
78 void startup(World& world,
int argc,
char** argv,
bool doprint=
false,
bool make_stdcout_nice_to_reals =
true);
96 template<
typename T, std::
size_t NDIM>
99 template<
typename T, std::
size_t NDIM>
102 template<
typename T, std::
size_t NDIM>
105 template<
typename T, std::
size_t NDIM>
106 class FunctionFactory;
108 template<
typename T, std::
size_t NDIM>
109 class FunctionFunctorInterface;
111 template<
typename T, std::
size_t NDIM>
114 template<
typename T, std::
size_t NDIM>
117 template<
typename T, std::
size_t NDIM>
120 template<
typename T, std::
size_t NDIM, std::
size_t LDIM,
typename opT>
123 template<
typename T, std::
size_t NDIM,
typename opT>
126 template<
typename T, std::
size_t NDIM>
138 template <
typename T, std::
size_t NDIM>
146 std::shared_ptr< FunctionImpl<T,NDIM> >
impl;
150 if(
impl==NULL)
return false;
193 if (
this != &
f)
impl =
f.impl;
208 const double eps=1
e-15;
215 for (std::size_t
d=0;
d<
NDIM; ++
d) {
216 if (xsim[
d] < -eps) {
219 else if (xsim[
d] < eps) {
223 if (xsim[
d] > 1.0+eps) {
226 else if (xsim[
d] > 1.0-eps) {
241 const double eps=1
e-15;
248 for (std::size_t
d=0;
d<
NDIM; ++
d) {
249 if (xsim[
d] < -eps) {
252 else if (xsim[
d] < eps) {
256 if (xsim[
d] > 1.0+eps) {
259 else if (xsim[
d] > 1.0-eps) {
263 return impl->eval_local_only(xsim,maxlevel);
274 const double eps=1
e-15;
281 for (std::size_t
d=0;
d<
NDIM; ++
d) {
282 if (xsim[
d] < -eps) {
285 else if (xsim[
d] < eps) {
289 if (xsim[
d] > 1.0+eps) {
292 else if (xsim[
d] > 1.0-eps) {
311 const double eps=1
e-15;
318 for (std::size_t
d=0;
d<
NDIM; ++
d) {
319 if (xsim[
d] < -eps) {
322 else if (xsim[
d] < eps) {
326 if (xsim[
d] > 1.0+eps) {
329 else if (xsim[
d] > 1.0-eps) {
351 const std::vector<long>& npt,
352 bool eval_refine =
false)
const {
355 const double eps=1
e-14;
359 for (std::size_t
d=0;
d<
NDIM; ++
d) {
360 simlo[
d] = cell(
d,0);
361 simhi[
d] = cell(
d,1);
368 for (std::size_t
d=0;
d<
NDIM; ++
d) {
373 double delta = eps*(simhi[
d]-simlo[
d]);
377 return impl->eval_plot_cube(simlo, simhi, npt, eval_refine);
396 if (
impl->world.rank() == 0) result =
eval(xuser).get();
397 impl->world.gop.broadcast(result);
405 T operator()(
double x,
double y=0,
double z=0,
double xx=0,
double yy=0,
double zz=0)
const {
408 if (
NDIM>=2) r[1] = y;
409 if (
NDIM>=3) r[2] = z;
410 if (
NDIM>=4) r[3] = xx;
411 if (
NDIM>=5) r[4] = yy;
412 if (
NDIM>=6) r[5] = zz;
432 impl->world.gop.broadcast(result);
444 template <
typename funcT>
459 template <
typename funcT>
468 impl->world.gop.fence();
485 return impl->is_compressed();
496 return impl->is_reconstructed();
506 return impl ?
impl->is_nonstandard() :
false;
514 return impl->tree_size();
520 print(
"function",
name,
"not assigned yet");
530 return impl->max_depth();
538 return impl->max_local_depth();
546 return impl->max_nodes();
553 return impl->min_nodes();
568 return impl->size_local();
575 if (!
impl)
return true;
576 return impl->get_autorefine();
586 impl->set_autorefine(value);
594 if (!
impl)
return 0.0;
595 return impl->get_thresh();
605 impl->set_thresh(value);
614 return impl->get_k();
629 if (!
impl)
return *
this;
639 const std::shared_ptr< FunctionImpl<T,NDIM> >&
get_impl()
const {
657 this->impl->set_functor(functor);
658 print(
"set functor in mra.h");
666 template <
typename R>
668 impl = std::shared_ptr<implT>(
new implT(*
f.get_impl(),
f.get_pmap(), zero));
681 const std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >&
get_pmap()
const {
684 return impl->get_pmap();
696 impl->distribute(newmap);
706 return impl->norm2sq_local();
720 impl->world.gop.fence();
812 if (not
impl)
return *
this;
814 if (finalstate == current_state)
return *
this;
817 impl->change_tree_state(finalstate,
fence);
835 template <
typename opT>
846 return impl->autorefine_square_test(key, t);
849 template <
typename Archive>
void serialize (Archive& ar) {}
862 bool fence =
true)
const {
891 if (
impl)
impl->print_tree_json(os);
897 os <<
"digraph G {" << std::endl;
898 if (
impl)
impl->print_tree_graphviz(os);
899 os <<
"}" << std::endl;
916 template <
typename Archive>
void serialize(Archive& ar) {}
928 template <
typename opT>
938 template <
typename opT>
948 template <
typename opT>
977 template <
typename Q>
1005 template <
typename Q,
typename R>
1012 "gaxpy requires both functions to be in the same tree state");
1014 "gaxpy requires the tree state to be reconstructed or compressed");
1019 if (not same_world) {
1035 template <
typename Q>
1048 return gaxpy(
T(1.0), other,
Q(1.0),
true);
1055 template <
typename Q>
1068 return gaxpy(
T(1.0), other,
Q(-1.0),
true);
1075 template <
typename Q>
1120 if (!
impl)
return 0.0;
1122 return impl->trace_local();
1129 if (!
impl)
return 0.0;
1132 impl->world.gop.fence();
1138 template <
typename R>
1145 return impl->inner_local(*(
g.get_impl()));
1152 template<
typename R>
1158 impl->get_coeffs().clear();
1170 template<
typename opT>
1174 impl->get_coeffs().clear();
1185 impl->get_coeffs().clear();
1193 template<
typename opT>
1197 impl->get_coeffs().clear();
1210 impl->get_coeffs().clear();
1221 template<
typename opT>
1225 impl->get_coeffs().clear();
1238 impl->get_coeffs().clear();
1248 template<
size_t LDIM,
size_t KDIM,
typename opT>
1256 impl->finalize_sum();
1262 template<
size_t LDIM,
size_t KDIM>
1269 impl->finalize_sum();
1278 template <
typename R>
1284 if (not
g.is_initialized())
return 0.0;
1287 if constexpr (std::is_same_v<T,R>) {
1298 if constexpr (std::is_same_v<R,T>) {
1300 return g.inner_on_demand(*
this);
1301 if (
g.is_on_demand())
1302 return this->inner_on_demand(
g);
1314 impl->world.gop.fence();
1366 impl->world.gop.fence();
1379 const bool leaf_refine=
true)
const {
1382 T local =
impl->inner_adaptive_local(
f, leaf_refine);
1384 impl->world.gop.fence();
1392 template <
typename L>
1407 template<
typename R>
1411 constexpr std::size_t
LDIM=std::max(
NDIM/2,std::size_t(1));
1415 func->replicate_low_dim_functions(
true);
1432 template <
typename R,
size_t LDIM>
1438 static const size_t KDIM=
NDIM-
LDIM;
1447 this->
get_impl()->project_out(result.
get_impl().get(),
g.get_impl().get(),dim,
true);
1451 result.
get_impl()->trickle_down(
false);
1473 template <
typename Archive>
1477 long magic = 0l,
id = 0l, ndim = 0l,
k = 0l;
1478 ar & magic &
id & ndim &
k;
1494 template <
typename Archive>
1508 if (not
impl)
return;
1514 template <
typename Q,
typename opT>
1527 template <
typename Q, std::
size_t D>
1530 std::vector< std::shared_ptr< FunctionImpl<Q,D> > > r(
v.size());
1531 for (
unsigned int i=0; i<
v.size(); ++i) r[i] =
v[i].
get_impl();
1536 template <
typename opT>
1538 std::vector<implT*>
v(vf.size(),NULL);
1539 for (
unsigned int i=0; i<
v.size(); ++i) {
1555 template <
typename opT>
1559 const bool fence=
true) {
1560 std::vector<implT*> vimplin(vin.size(),NULL);
1561 for (
unsigned int i=0; i<vin.size(); ++i) {
1562 if (vin[i].
is_initialized()) vimplin[i] = vin[i].get_impl().get();
1564 std::vector<implT*> vimplout(vout.size(),NULL);
1565 for (
unsigned int i=0; i<vout.size(); ++i) {
1566 if (vout[i].
is_initialized()) vimplout[i] = vout[i].get_impl().get();
1569 impl->multi_to_multi_op_values(
op, vimplin, vimplout,
fence);
1576 template <
typename L,
typename R>
1584 std::vector<FunctionImpl<T,NDIM>*> vresult(right.size());
1585 std::vector<const FunctionImpl<R,NDIM>*> vright(right.size());
1586 for (
unsigned int i=0; i<right.size(); ++i) {
1587 result[i].set_impl(left,
false);
1588 vresult[i] = result[i].impl.get();
1589 vright[i] = right[i].get_impl().get();
1593 vresult[0]->mulXXvec(left.
get_impl().get(), vright, vresult, tol,
fence);
1599 template<
typename L,
typename R>
1609 impl->multiply(leaf_op1,gimpl,fimpl,
fence);
1612 impl->multiply(leaf_op1,fimpl,gimpl,
fence);
1617 template <
typename R,
typename Q>
1628 template <
typename L,
typename R>
1648 impl.reset(
new implT(*
f.impl,
f.get_pmap(),
false));
1662 for (std::size_t i=0; i<
NDIM; ++i)
MADNESS_ASSERT((mirrormap[i]==1) or (mirrormap[i]==-1));
1663 impl.reset(
new implT(*
f.impl,
f.get_pmap(),
false));
1678 const std::vector<long>& map,
const std::vector<long>&
mirror,
1684 for (std::size_t i=0; i<map.size(); ++i)
MADNESS_ASSERT(map[i]>=0 &&
static_cast<std::size_t
>(map[i])<
NDIM);
1686 impl.reset(
new implT(*
f.impl,
f.get_pmap(),
false));
1697 double local =
impl->check_symmetry_local();
1699 impl->world.gop.fence();
1700 double asy=sqrt(
local);
1701 if (this->
world().rank()==0)
print(
"asymmetry wrt particle",asy);
1718 impl->chop_at_level(n,
true);
1725 template <
typename T,
typename opT, std::
size_t NDIM>
1734 template <
typename Q,
typename T, std::
size_t NDIM>
1742 result.get_impl()->scale_oop(
alpha,*
f.get_impl(),fence);
1748 template <
typename Q,
typename T, std::
size_t NDIM>
1759 template <
typename Q,
typename T, std::
size_t NDIM>
1768 template <
typename Q,
typename T, std::
size_t NDIM>
1775 template <
typename L,
typename R,std::
size_t NDIM>
1787 result.get_impl()->mulXX(left.
get_impl().get(), right.
get_impl().get(), tol, fence);
1792 template <
typename L,
typename R,std::
size_t NDIM>
1799 template <
typename L,
typename R,
typename opT, std::
size_t NDIM>
1808 result.get_impl()->binaryXX(left.
get_impl().get(), right.
get_impl().get(),
op, fence);
1813 template <
typename Q,
typename opT, std::
size_t NDIM>
1814 Function<typename opT::resultT, NDIM>
1816 if (!
func.is_reconstructed())
func.reconstruct();
1820 result.
get_impl()->unaryXXvalues(
func.get_impl().get(),
op, fence);
1826 template <
typename Q,
typename opT, std::
size_t NDIM>
1827 Function<typename opT::resultT, NDIM>
1840 template <
typename L,
typename R, std::
size_t D>
1845 vresult[0].vmulXX(left, vright, vresult, tol, fence);
1853 template <
typename L,
typename R, std::
size_t NDIM>
1859 return mul(left,right,
true);
1865 template<
typename T, std::
size_t KDIM, std::
size_t LDIM>
1866 Function<T,KDIM+LDIM>
1881 std::vector<std::shared_ptr<FunctionImpl<T,KDIM>>> vleft=
get_impl(left);
1882 std::vector<std::shared_ptr<FunctionImpl<T,LDIM>>> vright=
get_impl(right);
1891 template<
typename T, std::
size_t KDIM, std::
size_t LDIM>
1892 Function<T,KDIM+LDIM>
1894 typedef std::vector<Function<T,KDIM>> vector;
1899 template<
typename T, std::
size_t KDIM, std::
size_t LDIM,
typename opT>
1900 Function<T,KDIM+LDIM>
1915 print(
"incomplete FunctionFactory in Function::hartree_product");
1924 std::vector<std::shared_ptr<FunctionImpl<T,KDIM>>> vleft;
1925 std::vector<std::shared_ptr<FunctionImpl<T,LDIM>>> vright;
1927 vright.push_back(right.
get_impl());
1931 if (not same) right.
standard(
false);
1940 template <
typename L,
typename R,std::
size_t NDIM>
1950 template <
typename L,
typename R,std::
size_t NDIM>
1960 template <
typename L,
typename R,std::
size_t NDIM>
1969 template<
typename T, std::
size_t NDIM>
1985 template <
typename L,
typename R, std::
size_t NDIM>
1999 return add(left,right,
true);
2004 template <
typename L,
typename R,std::
size_t NDIM>
2015 template <
typename L,
typename R, std::
size_t NDIM>
2027 return sub(left,right,
true);
2036 template <
typename T, std::
size_t NDIM>
2039 bool fence =
true) {
2044 result.
set_impl(std::shared_ptr<implT>(
new implT(*
f.get_impl(), pmap,
false)));
2045 result.
get_impl()->copy_coeffs(*
f.get_impl(), fence);
2051 template <
typename T, std::
size_t NDIM>
2054 return copy(
f,
f.get_pmap(), fence);
2066 template <
typename T,
typename Q, std::
size_t NDIM>
2072 result.
get_impl()->copy_coeffs(*
f.get_impl(), fence);
2080 template <
typename T, std::
size_t NDIM>
2084 return result.
conj(fence);
2097 template <
typename opT,
typename T, std::
size_t LDIM>
2101 World& world=
f1.front().world();
2104 typedef std::vector<Function<T,LDIM>> vecfuncL;
2106 vecfuncL& ff1 =
const_cast< vecfuncL&
>(
f1);
2107 vecfuncL& ff2 =
const_cast< vecfuncL&
>(
f2);
2109 bool same=(ff1[0].get_impl()==ff2[0].get_impl());
2116 for (
auto&
f :
f1)
f.make_nonstandard(
true,
false);
2117 for (
auto&
f :
f2)
f.make_nonstandard(
true,
false);
2129 for (
size_t i=0; i<
f1.size(); ++i)
2133 if (
op.print_timings) {
2138 result.
get_impl()->finalize_apply();
2140 if (
op.modified()) {
2141 result.
get_impl()->trickle_down(
true);
2143 result.
get_impl()->reconstruct(
true);
2146 if (not same)
standard(world,ff2,
false);
2153 template <
typename opT,
typename R, std::
size_t NDIM>
2158 constexpr std::size_t OPDIM=opT::opdim;
2159 constexpr bool low_dim=(OPDIM*2==
NDIM);
2162 if (
NDIM <= 3 and (not low_dim)) {
2164 result.get_impl()->apply(
op, *
f.get_impl(), fence);
2171 r1.set_impl(
f,
false);
2173 result.get_impl()->reset_timer();
2176 result.get_impl()->apply_source_driven(
op, *
f.get_impl(), fence);
2199 template <
typename opT,
typename R, std::
size_t NDIM>
2214 if (
op.modified()) {
2219 ff.
get_impl()->undo_redundant(
false);
2220 result.
get_impl()->trickle_down(
true);
2230 fff.
get_impl()->timer_filter.print(
"filter");
2231 fff.
get_impl()->timer_compress_svd.print(
"compress_svd");
2240 double elapsed=result.
get_impl()->finalize_apply();
2241 if (
print_timings) printf(
"time in finalize_apply %8.2f\n",elapsed);
2248 result.
get_impl()->reconstruct(
true);
2251 if (
op.destructive()) {
2264 template <
typename opT,
typename R, std::
size_t NDIM>
2275 result.get_impl()->apply_1d_realspace_push(
op, ff.
get_impl().get(),
axis, fence);
2292 template <
typename T, std::
size_t NDIM>
2297 return result.
mapdim(
f,map,fence);
2304 template <
typename T, std::
size_t NDIM>
2309 return result.
mirror(
f,mirrormap,fence);
2321 template <
typename T, std::
size_t NDIM>
2324 const std::vector<long>&
mirror,
bool fence=
true) {
2335 template <
typename T, std::
size_t NDIM>
2336 typename std::enable_if_t<NDIM%2==0, Function<T,NDIM>>
2339 std::vector<long> map(
NDIM);
2340 constexpr std::size_t LDIM=
NDIM/2;
2341 static_assert(LDIM*2==
NDIM);
2342 for (
auto d=0;
d<LDIM; ++
d) {
2361 template <
typename T, std::
size_t NDIM>
2367 std::vector<long> map(
NDIM);
2370 if (symmetry==
"sy_particle") {
2371 map[0]=3; map[1]=4; map[2]=5;
2372 map[3]=0; map[4]=1; map[5]=2;
2373 }
else if (symmetry==
"cx") {
2374 map[0]=0; map[1]=2; map[2]=1;
2375 map[3]=3; map[4]=5; map[5]=4;
2377 }
else if (symmetry==
"cy") {
2378 map[0]=2; map[1]=1; map[2]=0;
2379 map[3]=5; map[4]=4; map[5]=3;
2381 }
else if (symmetry==
"cz") {
2382 map[0]=1; map[1]=0; map[2]=2;
2383 map[3]=4; map[4]=3; map[5]=5;
2386 if (
f.world().rank()==0) {
2387 print(
"unknown parameter in symmetrize:",symmetry);
2393 result.
get_impl()->average(*
f.get_impl());
2406 template<
typename T, std::
size_t NDIM, std::
size_t LDIM>
2409 static_assert(LDIM+LDIM==
NDIM);
2432 template <
typename T, std::
size_t NDIM>
2450 template <
typename T,
typename R, std::
size_t NDIM>
2462 template<std::size_t
NDIM,
typename T, std::size_t LDIM,
typename R, std::size_t KDIM,
2463 std::size_t CDIM = (KDIM + LDIM -
NDIM) / 2>
2466 const std::array<int, CDIM> v2,
int task=0) {
2467 bool prepare = ((
task==0) or (
task==1));
2468 bool work = ((
task==0) or (
task==2));
2469 bool finish = ((
task==0) or (
task==3));
2471 static_assert((KDIM + LDIM -
NDIM) % 2 == 0,
"faulty dimensions in inner (partial version)");
2472 static_assert(KDIM + LDIM - 2 * CDIM ==
NDIM,
"faulty dimensions in inner (partial version)");
2475 for (
int i=0; i<CDIM-1; ++i)
MADNESS_CHECK((v1[i]+1)==v1[i+1]);
2478 for (
int i=0; i<CDIM-1; ++i)
MADNESS_CHECK((v2[i]+1)==v2[i+1]);
2493 f.get_impl()->compute_snorm_and_dnorm(
false);
2494 for (
auto&
g : vg)
g.get_impl()->compute_snorm_and_dnorm(
false);
2499 std::vector<Function<resultT,NDIM>> result(vg.size());
2502 for (
int i=0; i<vg.size(); ++i) {
2505 result[i].get_impl()->partial_inner(*
f.get_impl(),*(vg[i]).get_impl(),v1,v2);
2519 auto erase_list = [] (
const auto& funcimpl) {
2520 typedef typename std::decay_t<
decltype(funcimpl)>::keyT keyTT;
2521 std::list<keyTT> to_be_erased;
2522 for (
auto it=funcimpl.get_coeffs().begin(); it!=funcimpl.get_coeffs().end(); ++it) {
2523 const auto& key=it->first;
2524 const auto& node=it->second;
2525 if (not node.has_children()) to_be_erased.push_back(key);
2527 return to_be_erased;
2532 for (
auto&
g : vg) {
2552 template<std::size_t
NDIM,
typename T, std::size_t LDIM,
typename R, std::size_t KDIM,
2553 std::size_t CDIM = (KDIM + LDIM -
NDIM) / 2>
2556 const std::array<int, CDIM> v2,
int task=0) {
2564 template <
typename T, std::
size_t LDIM,
typename R, std::
size_t KDIM>
2568 std::array<int,1>({std::get<0>(v1)}),
2569 std::array<int,1>({std::get<0>(v2)}));
2576 template <
typename T, std::
size_t LDIM,
typename R, std::
size_t KDIM>
2580 std::array<int,2>({std::get<0>(v1),std::get<1>(v1)}),
2581 std::array<int,2>({std::get<0>(v2),std::get<1>(v2)}));
2588 template <
typename T, std::
size_t LDIM,
typename R, std::
size_t KDIM>
2592 std::array<int,3>({std::get<0>(v1),std::get<1>(v1),std::get<2>(v1)}),
2593 std::array<int,3>({std::get<0>(v2),std::get<1>(v2),std::get<2>(v2)}));
2606 template <
typename T,
typename opT, std::
size_t NDIM>
2609 std::shared_ptr< FunctionFunctorInterface<double,3> >
func(
new opT(
g));
2621 template <
typename T,
typename opT, std::
size_t NDIM>
2626 template <
typename T,
typename R, std::
size_t NDIM>
2629 return (
f*
R(1.0)).add_scalar(r);
2632 template <
typename T,
typename R, std::
size_t NDIM>
2635 return (
f*
R(1.0)).add_scalar(r);
2638 template <
typename T,
typename R, std::
size_t NDIM>
2641 return (
f*
R(1.0)).add_scalar(-r);
2644 template <
typename T,
typename R, std::
size_t NDIM>
2647 return (
f*
R(-1.0)).add_scalar(r);
2651 template <std::
size_t NDIM>
2661 template <std::
size_t NDIM>
2671 template <std::
size_t NDIM>
2682 template <std::
size_t NDIM>
2696 template <std::
size_t NDIM>
2702 template <std::
size_t NDIM>
2708 template <std::
size_t NDIM>
2715 template <
typename T, std::
size_t NDIM>
2719 return result.
square(
true);
2723 template <
typename T, std::
size_t NDIM>
2727 return result.
abs(
true);
2731 template <
typename T, std::
size_t NDIM>
2732 typename std::enable_if<!TensorTypeData<T>::iscomplex, Function<T,NDIM> >
::type
2740 template <
typename T, std::
size_t NDIM>
2741 typename std::enable_if<TensorTypeData<T>::iscomplex, Function<typename Tensor<T>::scalar_type,
NDIM> >
::type
2747 template <std::
size_t NDIM>
2753 template <std::
size_t NDIM>
2764 template <
class archiveT,
class T, std::
size_t NDIM>
2771 template <
class archiveT,
class T, std::
size_t NDIM>
2779 template <
class T, std::
size_t NDIM>
2785 template <
class T, std::
size_t NDIM>
2798 template<
typename T, std::
size_t NDIM>
double q(double t)
Definition DKops.h:18
This header should include pretty much everything needed for the parallel runtime.
long dim(int i) const
Returns the size of dimension i.
Definition basetensor.h:147
This class is used to specify boundary conditions for all operators.
Definition bc.h:72
CompositeFunctorInterface implements a wrapper of holding several functions and functors.
Definition function_interface.h:165
FunctionDefaults holds default paramaters as static class members.
Definition funcdefaults.h:100
static const double & get_thresh()
Returns the default threshold.
Definition funcdefaults.h:176
FunctionFactory implements the named-parameter idiom for Function.
Definition function_factory.h:86
FunctionFactory & nofence()
Definition function_factory.h:275
virtual FunctionFactory & thresh(double thresh)
Definition function_factory.h:191
FunctionFactory & fence(bool fence=true)
Definition function_factory.h:269
virtual FunctionFactory & k(int k)
Definition function_factory.h:186
FunctionFactory & empty()
Definition function_factory.h:239
Abstract base class interface required for functors used as input to Functions.
Definition function_interface.h:68
FunctionImpl holds all Function state to facilitate shallow copy semantics.
Definition funcimpl.h:945
const dcT & get_coeffs() const
Definition mraimpl.h:322
void reconstruct(bool fence)
reconstruct this tree – respects fence
Definition mraimpl.h:1495
bool is_on_demand() const
Definition mraimpl.h:262
FunctionNode holds the coefficients, etc., at each node of the 2^NDIM-tree.
Definition funcimpl.h:127
A multiresolution adaptive numerical function.
Definition mra.h:139
void print_tree_json(std::ostream &os=std::cout) const
Definition mra.h:889
Tensor< T > eval_cube(const Tensor< double > &cell, const std::vector< long > &npt, bool eval_refine=false) const
Evaluates a cube/slice of points (probably for plotting) ... collective but no fence necessary.
Definition mra.h:350
TENSOR_RESULT_TYPE(T, R) inner(const Function< R
Returns the inner product.
Function< T, NDIM > & map_and_mirror(const Function< T, NDIM > &f, const std::vector< long > &map, const std::vector< long > &mirror, bool fence)
This is replaced with mirror(map(f)) ... private.
Definition mra.h:1677
void gaxpy_ext(const Function< L, NDIM > &left, T(*f)(const coordT &), T alpha, T beta, double tol, bool fence=true) const
Definition mra.h:1393
T inner_adaptive(const std::shared_ptr< FunctionFunctorInterface< T, NDIM > > f, const bool leaf_refine=true) const
Definition mra.h:1378
void unaryop_coeff(const opT &op, bool fence=true)
Unary operation applied inplace to the coefficients.
Definition mra.h:939
bool is_compressed() const
Returns true if compressed, false otherwise. No communication.
Definition mra.h:482
Function< T, NDIM/2 > dirac_convolution(const bool fence=true) const
Definition mra.h:1457
return impl inner_local * g())
void set_impl(const Function< R, NDIM > &f, bool zero=true)
Replace current FunctionImpl with a new one using the same parameters & map as f.
Definition mra.h:667
bool autorefine() const
Returns value of autorefine flag. No communication.
Definition mra.h:573
Function< T, NDIM > & add_scalar(T t, bool fence=true)
Inplace add scalar. No communication except for optional fence.
Definition mra.h:988
void print_size(const std::string name) const
print some info about this
Definition mra.h:518
Function< T, NDIM > & fill_tree(const Function< R, NDIM > &g, bool fence=true)
With this being an on-demand function, fill the MRA tree according to different criteria.
Definition mra.h:1153
void broaden(const BoundaryConditions< NDIM > &bc=FunctionDefaults< NDIM >::get_bc(), bool fence=true) const
Inplace broadens support in scaling function basis.
Definition mra.h:861
void print_info() const
Print a summary of the load balancing info.
Definition mra.h:905
Function< T, NDIM > & scale(const Q q, bool fence=true)
Inplace, scale the function by a constant. No communication except for optional fence.
Definition mra.h:978
void norm_tree(bool fence=true) const
Initializes information about the function norm at all length scales.
Definition mra.h:726
void load(World &world, Archive &ar)
Replaces this function with one loaded from an archive using the default processor map.
Definition mra.h:1474
Function< T, NDIM > & abs_square(bool fence=true)
Returns *this for chaining.
Definition mra.h:1105
double norm2sq_local() const
Returns the square of the norm of the local function ... no communication.
Definition mra.h:703
IsSupported< TensorTypeData< Q >, Function< T, NDIM > >::type & operator*=(const Q q)
Inplace scaling by a constant.
Definition mra.h:1077
void sum_down(bool fence=true) const
Sums scaling coeffs down tree restoring state with coeffs only at leaves. Optional fence....
Definition mra.h:823
Level depthpt(const coordT &xuser) const
Definition mra.h:426
Function< T, NDIM > & operator+=(const Function< Q, NDIM > &other)
Inplace addition of functions in the wavelet basis.
Definition mra.h:1036
Function< T, NDIM > & operator=(const Function< T, NDIM > &f)
Assignment is shallow. No communication, works in either basis.
Definition mra.h:191
void set_autorefine(bool value, bool fence=true)
Sets the value of the autorefine flag. Optional global fence.
Definition mra.h:583
World & world() const
Returns the world.
Definition mra.h:673
T trace() const
Returns global value of int(f(x),x) ... global comm required.
Definition mra.h:1127
T typeT
Definition mra.h:157
Function< T, NDIM > & fill_tree(const opT &op, bool fence=true)
With this being an on-demand function, fill the MRA tree according to different criteria.
Definition mra.h:1171
const Function< T, NDIM > & change_tree_state(const TreeState finalstate, bool fence=true) const
changes tree state to given state
Definition mra.h:810
Function< typename opT::resultT, NDIM > & unary_op_coeffs(const Function< Q, NDIM > &func, const opT &op, bool fence)
This is replaced with left*right ... private.
Definition mra.h:1515
void print_tree_graphviz(std::ostream &os=std::cout) const
Process 0 prints a graphviz-formatted output of all nodes in the tree (collective)
Definition mra.h:895
double norm2() const
Returns the 2-norm of the function ... global sum ... works in either basis.
Definition mra.h:713
Function< T, NDIM > & fill_cuspy_tree(const opT &op, const bool fence=true)
Definition mra.h:1194
void change_tensor_type(const TensorArgs &targs, bool fence=true)
change the tensor type of the coefficients in the FunctionNode
Definition mra.h:1507
const Function< T, NDIM > & refine(bool fence=true) const
Inplace autorefines the function using same test as for squaring.
Definition mra.h:855
TreeState gstate
Definition mra.h:1310
TENSOR_RESULT_TYPE(T, R) inner_on_demand(const Function< R
Returns the inner product for one on-demand function.
T operator()(const coordT &xuser) const
Evaluates the function at a point in user coordinates. Collective operation.
Definition mra.h:391
MADNESS_ASSERT(g.is_compressed())
Function< T, NDIM > & square(bool fence=true)
Inplace squaring of function ... global comm only if not reconstructed.
Definition mra.h:1087
Function< T, NDIM > & fill_tree(bool fence=true)
With this being an on-demand function, fill the MRA tree according to different criteria.
Definition mra.h:1182
void verify_tree() const
Verifies the tree data structure ... global sync implied.
Definition mra.h:473
Future< Level > evaldepthpt(const coordT &xuser) const
Definition mra.h:272
void do_hartree_product(const std::vector< std::shared_ptr< FunctionImpl< T, LDIM > > > left, const std::vector< std::shared_ptr< FunctionImpl< T, KDIM > > > right)
perform the hartree product of f*g, invoked by result
Definition mra.h:1263
Function< T, NDIM > & mapdim(const Function< T, NDIM > &f, const std::vector< long > &map, bool fence)
This is replaced with mapdim(f) ... private.
Definition mra.h:1643
int k() const
Returns the number of multiwavelets (k). No communication.
Definition mra.h:611
const std::shared_ptr< WorldDCPmapInterface< Key< NDIM > > > & get_pmap() const
Returns a shared pointer to the process map.
Definition mra.h:681
double thresh() const
Returns value of truncation threshold. No communication.
Definition mra.h:592
Function< T, NDIM > & gaxpy_oop(T alpha, const Function< L, NDIM > &left, T beta, const Function< R, NDIM > &right, bool fence)
This is replaced with alpha*left + beta*right ... private.
Definition mra.h:1629
void set_thresh(double value, bool fence=true)
Sets the value of the truncation threshold. Optional global fence.
Definition mra.h:602
Function< T, NDIM > & multiop_values(const opT &op, const std::vector< Function< T, NDIM > > &vf)
This is replaced with op(vector of functions) ... private.
Definition mra.h:1537
void distribute(std::shared_ptr< WorldDCPmapInterface< Key< NDIM > > > newmap) const
distribute this function according to newmap
Definition mra.h:694
void unaryop(const opT &op, bool fence=true)
Inplace unary operation on function values.
Definition mra.h:929
const std::shared_ptr< FunctionImpl< T, NDIM > > & get_impl() const
Returns a shared-pointer to the implementation.
Definition mra.h:639
void standard(bool fence=true)
Converts the function standard compressed form. Possible non-blocking comm.
Definition mra.h:773
void unaryop_node(const opT &op, bool fence=true)
Unary operation applied inplace to the nodes.
Definition mra.h:949
Function< T, NDIM > & truncate(double tol=0.0, bool fence=true)
Truncate the function with optional fence. Compresses with fence if not compressed.
Definition mra.h:627
Function< T, NDIM > & fill_cuspy_tree(const bool fence=true)
Special refinement on 6D boxes where the electrons come close (meet)
Definition mra.h:1207
std::size_t size() const
Returns the number of coefficients in the function ... collective global sum.
Definition mra.h:558
bool is_on_demand() const
Definition mra.h:661
Function< T, NDIM > & operator-=(const Function< Q, NDIM > &other)
Inplace subtraction of functions in the wavelet basis.
Definition mra.h:1056
const Function< T, NDIM > & reconstruct(bool fence=true) const
Reconstructs the function, transforming into scaling function basis. Possible non-blocking comm.
Definition mra.h:800
Function< T, NDIM > & abs(bool fence=true)
Returns *this for chaining.
Definition mra.h:1096
Function< T, NDIM > & reduce_rank(const double thresh=0.0, const bool fence=true)
reduce the rank of the coefficient tensors
Definition mra.h:1707
Function< T, NDIM > & mirror(const Function< T, NDIM > &f, const std::vector< long > &mirrormap, bool fence)
This is replaced with mirror(f) ... private.
Definition mra.h:1658
std::size_t max_nodes() const
Returns the max number of nodes on a processor.
Definition mra.h:543
void do_hartree_product(const std::vector< std::shared_ptr< FunctionImpl< T, LDIM > > > left, const std::vector< std::shared_ptr< FunctionImpl< T, KDIM > > > right, const opT *op)
perform the hartree product of f*g, invoked by result
Definition mra.h:1249
std::shared_ptr< FunctionImpl< T, NDIM > > impl
Definition mra.h:146
void replicate(bool fence=true) const
replicate this function, generating a unique pmap
Definition mra.h:688
T trace_local() const
Returns local contribution to int(f(x),x) ... no communication.
Definition mra.h:1118
void mul_on_demand(const Function< L, NDIM > &f, const Function< R, NDIM > &g, bool fence=true)
Same as operator* but with optional fence and no automatic reconstruction.
Definition mra.h:1600
Function< T, NDIM > & gaxpy(const T &alpha, const Function< Q, NDIM > &other, const R &beta, bool fence=true)
Inplace, general bi-linear operation in wavelet basis. No communication except for optional fence.
Definition mra.h:1006
Vector< double, NDIM > coordT
Type of vector holding coordinates.
Definition mra.h:156
void store(Archive &ar) const
Stores the function to an archive.
Definition mra.h:1495
std::size_t max_local_depth() const
Returns the maximum local depth of the function tree ... no communications.
Definition mra.h:535
void vtransform(const std::vector< Function< R, NDIM > > &v, const Tensor< Q > &c, std::vector< Function< T, NDIM > > &vresult, double tol, bool fence=true)
sparse transformation of a vector of functions ... private
Definition mra.h:1618
TENSOR_RESULT_TYPE(T, R) local
std::size_t max_depth() const
Returns the maximum depth of the function tree ... collective global sum.
Definition mra.h:527
Function()
Default constructor makes uninitialized function. No communication.
Definition mra.h:174
std::size_t tree_size() const
Returns the number of nodes in the function tree ... collective global sum.
Definition mra.h:511
Function< TENSOR_RESULT_TYPE(T, R), NDIM-LDIM > project_out(const Function< R, LDIM > &g, const int dim) const
project this on the low-dim function g: h(x) = <f(x,y) | g(y)>
Definition mra.h:1433
static std::vector< std::shared_ptr< FunctionImpl< Q, D > > > vimpl(const std::vector< Function< Q, D > > &v)
Returns vector of FunctionImpl pointers corresponding to vector of functions.
Definition mra.h:1528
FunctionImpl< T, NDIM > implT
Definition mra.h:153
void clear(bool fence=true)
Clears the function as if constructed uninitialized. Optional fence.
Definition mra.h:872
void refine_general(const opT &op, bool fence=true) const
Inplace autorefines the function. Optional fence. Possible non-blocking comm.
Definition mra.h:836
static void doconj(const Key< NDIM >, Tensor< T > &t)
Definition mra.h:959
TreeState state
Definition mra.h:1309
std::pair< bool, T > eval_local_only(const Vector< double, NDIM > &xuser, Level maxlevel) const
Evaluate function only if point is local returning (true,value); otherwise return (false,...
Definition mra.h:240
void set_functor(const std::shared_ptr< FunctionFunctorInterface< T, NDIM > > functor)
Replace the current functor with the provided new one.
Definition mra.h:656
bool impl_initialized() const
Definition mra.h:149
Function< T, NDIM > & fill_nuclear_cuspy_tree(const opT &op, const size_t particle, const bool fence=true)
Definition mra.h:1222
return local
Definition mra.h:1334
auto func
Definition mra.h:1412
~Function()
Destruction of any underlying implementation is deferred to next global fence.
Definition mra.h:198
Function(const Function< T, NDIM > &f)
Copy constructor is shallow. No communication, works in either basis.
Definition mra.h:185
void set_impl(const std::shared_ptr< FunctionImpl< T, NDIM > > &impl)
Replace current FunctionImpl with provided new one.
Definition mra.h:646
T operator()(double x, double y=0, double z=0, double xx=0, double yy=0, double zz=0) const
Evaluates the function at a point in user coordinates. Collective operation.
Definition mra.h:405
T inner_ext_local(const std::shared_ptr< FunctionFunctorInterface< T, NDIM > > f, const bool leaf_refine=true, const bool keep_redundant=false) const
Definition mra.h:1345
std::size_t min_nodes() const
Returns the min number of nodes on a processor.
Definition mra.h:550
constexpr std::size_t LDIM
Definition mra.h:1411
static constexpr std::size_t dimT
Definition mra.h:158
bool is_nonstandard() const
Returns true if nonstandard-compressed, false otherwise. No communication.
Definition mra.h:504
void verify() const
Asserts that the function is initialized.
Definition mra.h:162
double err(const funcT &func) const
Returns an estimate of the difference ||this-func|| ... global sum performed.
Definition mra.h:460
T inner_ext(const std::shared_ptr< FunctionFunctorInterface< T, NDIM > > f, const bool leaf_refine=true, const bool keep_redundant=false) const
Definition mra.h:1361
void make_redundant(bool fence=true)
Converts the function to redundant form, i.e. sum coefficients on all levels.
Definition mra.h:785
Function< T, NDIM > & fill_nuclear_cuspy_tree(const size_t particle, const bool fence=true)
Special refinement on 6D boxes for the nuclear potentials (regularized with cusp, non-regularized wit...
Definition mra.h:1235
double check_symmetry() const
check symmetry of a function by computing the 2nd derivative
Definition mra.h:1693
void multi_to_multi_op_values(const opT &op, const std::vector< Function< T, NDIM > > &vin, std::vector< Function< T, NDIM > > &vout, const bool fence=true)
apply op on the input vector yielding an output vector of functions
Definition mra.h:1556
FunctionFactory< T, NDIM > factoryT
Definition mra.h:155
std::size_t size_local() const
Return the number of coefficients in the function on this processor.
Definition mra.h:565
const Function< T, NDIM > & compress(bool fence=true) const
Compresses the function, transforming into wavelet basis. Possible non-blocking comm.
Definition mra.h:746
bool is_initialized() const
Returns true if the function is initialized.
Definition mra.h:167
change_tree_state(state, false)
bool is_reconstructed() const
Returns true if reconstructed, false otherwise. No communication.
Definition mra.h:493
Function< T, NDIM > & chop_at_level(const int n, const bool fence=true)
remove all nodes with level higher than n
Definition mra.h:1715
MADNESS_ASSERT(is_compressed())
void vmulXX(const Function< L, NDIM > &left, const std::vector< Function< R, NDIM > > &right, std::vector< Function< T, NDIM > > &result, double tol, bool fence)
Multiplication of function * vector of functions using recursive algorithm of mulxx.
Definition mra.h:1577
double errsq_local(const funcT &func) const
Returns an estimate of the difference ||this-func||^2 from local data.
Definition mra.h:445
void make_nonstandard(bool keepleaves, bool fence=true) const
Compresses the function retaining scaling function coeffs. Possible non-blocking comm.
Definition mra.h:759
Future< T > eval(const coordT &xuser) const
Evaluates the function at a point in user coordinates. Possible non-blocking comm.
Definition mra.h:206
void print_tree(std::ostream &os=std::cout) const
Process 0 prints a summary of all nodes in the tree (collective)
Definition mra.h:882
FunctionNode< T, NDIM > nodeT
Definition mra.h:154
Future< long > evalR(const coordT &xuser) const
Evaluates the function rank at a point in user coordinates. Possible non-blocking comm.
Definition mra.h:309
Function(const factoryT &factory)
Constructor from FunctionFactory provides named parameter idiom. Possible non-blocking communication.
Definition mra.h:178
void unaryop(T(*f)(T))
Inplace unary operation on function values.
Definition mra.h:920
Function< T, NDIM > conj(bool fence=true)
Inplace complex conjugate. No communication except for optional fence.
Definition mra.h:967
A future is a possibly yet unevaluated value.
Definition future.h:373
remote_refT remote_ref(World &world) const
Returns a structure used to pass references to another process.
Definition future.h:675
Key is the index for a node of the 2^NDIM-tree.
Definition key.h:68
Traits class to specify support of numeric types.
Definition type_data.h:56
A tensor is a multidimensional array.
Definition tensor.h:317
Tensor< T > & emul(const Tensor< T > &t)
Inplace multiply by corresponding elements of argument Tensor.
Definition tensor.h:1798
Tensor< T > & conj()
Inplace complex conjugate.
Definition tensor.h:716
A simple, fixed dimension vector.
Definition vector.h:64
void erase(const keyT &key)
Erases entry from container (non-blocking comm if remote)
Definition worlddc.h:1105
Interface to be provided by any process map.
Definition worlddc.h:82
void fence(bool debug=false)
Synchronizes all processes in communicator AND globally ensures no pending AM or tasks.
Definition worldgop.cc:161
bool set_forbid_fence(bool value)
Set forbid_fence flag to new value and return old value.
Definition worldgop.h:674
A parallel world class.
Definition world.h:132
ProcessID rank() const
Returns the process rank in this World (same as MPI_Comm_rank()).
Definition world.h:320
ProcessID size() const
Returns the number of processes in this World (same as MPI_Comm_size()).
Definition world.h:330
unsigned long id() const
Definition world.h:315
WorldGopInterface & gop
Global operations.
Definition world.h:207
World * get_world() const
Returns a pointer to the world.
Definition parallel_archive.h:130
An archive for storing local or parallel data wrapping a BinaryFstreamOutputArchive.
Definition parallel_archive.h:321
Objects that implement their own parallel archive interface should derive from this class.
Definition parallel_archive.h:58
static const double R
Definition csqrt.cc:46
Declaration and initialization of tree traversal functions and generic derivative.
double(* f1)(const coord_3d &)
Definition derivatives.cc:55
double(* f2)(const coord_3d &)
Definition derivatives.cc:56
const double delta
Definition dielectric_external_field.cc:119
Provides FunctionDefaults and utilities for coordinate transformation.
Provides FunctionCommonData, FunctionImpl and FunctionFactory.
Defines/implements plotting interface for functions.
Provides typedefs to hide use of templates and to increase interoperability.
auto T(World &world, response_space &f) -> response_space
Definition global_functions.cc:34
const double beta
Definition gygi_soltion.cc:62
static const double v
Definition hatom_sf_dirac.cc:20
Tensor< double > op(const Tensor< double > &x)
Definition kain.cc:508
Multidimension Key for MRA tree and associated iterators.
Implements (2nd generation) static load/data balancing for functions.
#define MADNESS_CHECK(condition)
Check a condition — even in a release build the condition is always evaluated so it can have side eff...
Definition madness_exception.h:182
#define MADNESS_EXCEPTION(msg, value)
Macro for throwing a MADNESS exception.
Definition madness_exception.h:119
#define MADNESS_ASSERT(condition)
Assert a condition that should be free of side-effects since in release builds this might be a no-op.
Definition madness_exception.h:134
#define MADNESS_CHECK_THROW(condition, msg)
Check a condition — even in a release build the condition is always evaluated so it can have side eff...
Definition madness_exception.h:207
Header to declare stuff which has not yet found a home.
static const bool VERIFY_TREE
Definition mra.h:57
Namespace for all elements and tools of MADNESS.
Definition DFParameters.h:10
Function< T, NDIM > map_and_mirror(const Function< T, NDIM > &f, const std::vector< long > &map, const std::vector< long > &mirror, bool fence=true)
This is replaced with mirror(map(f)), optional fence.
Definition mra.h:2323
double abs(double x)
Definition complexfun.h:48
Function< double, NDIM > abssq(const Function< double_complex, NDIM > &z, bool fence=true)
Returns a new function that is the square of the absolute value of the input.
Definition mra.h:2748
Function< TENSOR_RESULT_TYPE(L, R), NDIM > gaxpy_oop(TENSOR_RESULT_TYPE(L, R) alpha, const Function< L, NDIM > &left, TENSOR_RESULT_TYPE(L, R) beta, const Function< R, NDIM > &right, bool fence=true)
Returns new function alpha*left + beta*right optional fence and no automatic compression.
Definition mra.h:1952
Function< typename TensorTypeData< Q >::scalar_type, NDIM > abs_square(const Function< Q, NDIM > &func)
Definition complexfun.h:121
Function< T, NDIM > mapdim(const Function< T, NDIM > &f, const std::vector< long > &map, bool fence=true)
Generate a new function by reordering dimensions ... optional fence.
Definition mra.h:2294
const std::vector< Function< T, NDIM > > & change_tree_state(const std::vector< Function< T, NDIM > > &v, const TreeState finalstate, const bool fence=true)
change tree state of the functions
Definition vmra.h:252
Function< T, NDIM > square(const Function< T, NDIM > &f, bool fence=true)
Create a new function that is the square of f - global comm only if not reconstructed.
Definition mra.h:2716
Function< TENSOR_RESULT_TYPE(typename opT::opT, R), NDIM > apply_1d_realspace_push(const opT &op, const Function< R, NDIM > &f, int axis, bool fence=true)
Definition mra.h:2266
Function< TENSOR_RESULT_TYPE(L, R), NDIM > sub(const Function< L, NDIM > &left, const Function< R, NDIM > &right, bool fence=true)
Same as operator- but with optional fence and no automatic compression.
Definition mra.h:2006
Function< TENSOR_RESULT_TYPE(L, R), NDIM > binary_op(const Function< L, NDIM > &left, const Function< R, NDIM > &right, const opT &op, bool fence=true)
Generate new function = op(left,right) where op acts on the function values.
Definition mra.h:1801
Function< Q, NDIM > convert(const Function< T, NDIM > &f, bool fence=true)
Type conversion implies a deep copy. No communication except for optional fence.
Definition mra.h:2067
Function< TENSOR_RESULT_TYPE(Q, T), NDIM > mul(const Q alpha, const Function< T, NDIM > &f, bool fence=true)
Returns new function equal to alpha*f(x) with optional fence.
Definition mra.h:1736
std::vector< std::shared_ptr< FunctionImpl< T, NDIM > > > get_impl(const std::vector< Function< T, NDIM > > &v)
Definition vmra.h:638
std::enable_if_t< NDIM%2==0, Function< T, NDIM > > swap_particles(const Function< T, NDIM > &f)
swap particles 1 and 2
Definition mra.h:2337
TreeState
Definition funcdefaults.h:59
@ nonstandard_after_apply
s and d coeffs, state after operator application
Definition funcdefaults.h:64
@ redundant_after_merge
s coeffs everywhere, must be summed up to yield the result
Definition funcdefaults.h:66
@ reconstructed
s coeffs at the leaves only
Definition funcdefaults.h:60
@ nonstandard
s and d coeffs in internal nodes
Definition funcdefaults.h:62
@ unknown
Definition funcdefaults.h:68
@ compressed
d coeffs in internal nodes, s and d coeffs at the root
Definition funcdefaults.h:61
@ redundant
s coeffs everywhere
Definition funcdefaults.h:65
@ nonstandard_with_leaves
like nonstandard, with s coeffs at the leaves
Definition funcdefaults.h:63
Function< T, NDIM > conj(const Function< T, NDIM > &f, bool fence=true)
Return the complex conjugate of the input function with the same distribution and optional fence.
Definition mra.h:2081
static void user_to_sim(const Vector< double, NDIM > &xuser, Vector< double, NDIM > &xsim)
Convert user coords (cell[][]) to simulation coords ([0,1]^ndim)
Definition funcdefaults.h:425
Function< T, NDIM > multiop_values(const opT &op, const std::vector< Function< T, NDIM > > &vf)
Definition mra.h:1726
void standard(World &world, std::vector< Function< T, NDIM > > &v, bool fence=true)
Generates standard form of a vector of functions.
Definition vmra.h:239
const std::vector< Function< T, NDIM > > & reconstruct(const std::vector< Function< T, NDIM > > &v)
reconstruct a vector of functions
Definition vmra.h:158
std::vector< Function< TENSOR_RESULT_TYPE(T, R), NDIM > > innerXX(const Function< T, LDIM > &f, const std::vector< Function< R, KDIM > > &vg, const std::array< int, CDIM > v1, const std::array< int, CDIM > v2, int task=0)
Computes the partial scalar/inner product between two functions, returns a low-dim function.
Definition mra.h:2465
Function< T, NDIM > mirror(const Function< T, NDIM > &f, const std::vector< long > &mirrormap, bool fence=true)
Generate a new function by mirroring within the dimensions .. optional fence.
Definition mra.h:2306
std::vector< CCPairFunction< T, NDIM > > operator*(const double fac, const std::vector< CCPairFunction< T, NDIM > > &arg)
Definition ccpairfunction.h:1089
std::shared_ptr< FunctionFunctorInterface< double, 3 > > func(new opT(g))
int Level
Definition key.h:57
Function< typename opT::resultT, NDIM > unary_op_coeffs(const Function< Q, NDIM > &func, const opT &op, bool fence=true)
Out of place application of unary operation to scaling function coefficients with optional fence.
Definition mra.h:1828
std::vector< CCPairFunction< T, NDIM > > operator-(const std::vector< CCPairFunction< T, NDIM > > c1, const std::vector< CCPairFunction< T, NDIM > > &c2)
Definition ccpairfunction.h:1060
Function< TENSOR_RESULT_TYPE(L, R), NDIM > mul_sparse(const Function< L, NDIM > &left, const Function< R, NDIM > &right, double tol, bool fence=true)
Sparse multiplication — left and right must be reconstructed and if tol!=0 have tree of norms already...
Definition mra.h:1777
std::string get_mra_data_dir()
Definition startup.cc:208
Function< T, NDIM > gaxpy_oop_reconstructed(const double alpha, const Function< T, NDIM > &left, const double beta, const Function< T, NDIM > &right, const bool fence=true)
Returns new function alpha*left + beta*right optional fence, having both addends reconstructed.
Definition mra.h:1970
void print(const T &t, const Ts &... ts)
Print items to std::cout (items separated by spaces) and terminate with a new line.
Definition print.h:225
response_space apply(World &world, std::vector< std::vector< std::shared_ptr< real_convolution_3d > > > &op, response_space &f)
Definition basic_operators.cc:39
@ TT_2D
Definition gentensor.h:120
NDIM & f
Definition mra.h:2451
Function< TENSOR_RESULT_TYPE(L, R), NDIM > add(const Function< L, NDIM > &left, const Function< R, NDIM > &right, bool fence=true)
Same as operator+ but with optional fence and no automatic compression.
Definition mra.h:1962
Function< T, NDIM > symmetrize(const Function< T, NDIM > &f, const std::string symmetry, bool fence=true)
symmetrize a function
Definition mra.h:2363
NDIM const Function< R, NDIM > & g
Definition mra.h:2451
Function< TENSOR_RESULT_TYPE(typename opT::opT, R), NDIM > apply_only(const opT &op, const Function< R, NDIM > &f, bool fence=true)
Apply operator ONLY in non-standard form - required other steps missing !!
Definition mra.h:2155
double inner(response_space &a, response_space &b)
Definition response_functions.h:442
double imag(double x)
Definition complexfun.h:56
Function< typename opT::resultT, NDIM > unary_op(const Function< Q, NDIM > &func, const opT &op, bool fence=true)
Out of place application of unary operation to function values with optional fence.
Definition mra.h:1815
void startup(World &world, int argc, char **argv, bool doprint=false, bool make_stdcout_nice_to_reals=true)
initialize the internal state of the MADmra library
Definition startup.cc:64
std::string type(const PairType &n)
Definition PNOParameters.h:18
std::vector< Function< TENSOR_RESULT_TYPE(L, R), D > > vmulXX(const Function< L, D > &left, const std::vector< Function< R, D > > &vright, double tol, bool fence=true)
Use the vmra/mul(...) interface instead.
Definition mra.h:1842
static bool print_timings
Definition SCF.cc:104
std::vector< CCPairFunction< T, NDIM > > operator+(const std::vector< CCPairFunction< T, NDIM > > c1, const std::vector< CCPairFunction< T, NDIM > > &c2)
Definition ccpairfunction.h:1052
Function< T, NDIM > multiply(const Function< T, NDIM > f, const Function< T, LDIM > g, const int particle, const bool fence=true)
multiply a high-dimensional function with a low-dimensional function
Definition mra.h:2407
void load(Function< T, NDIM > &f, const std::string name)
Definition mra.h:2786
Function< T, NDIM > project(const Function< T, NDIM > &other, int k=FunctionDefaults< NDIM >::get_k(), double thresh=FunctionDefaults< NDIM >::get_thresh(), bool fence=true)
Definition mra.h:2434
double real(double x)
Definition complexfun.h:52
std::string name(const FuncType &type, const int ex=-1)
Definition ccpairfunction.h:28
void save(const Function< T, NDIM > &f, const std::string name)
Definition mra.h:2780
Function< T, KDIM+LDIM > hartree_product(const std::vector< Function< T, KDIM > > &left, const std::vector< Function< T, LDIM > > &right)
Performs a Hartree/outer product on the two given low-dimensional function vectors.
Definition mra.h:1867
Function< T, NDIM > copy(const Function< T, NDIM > &f, const std::shared_ptr< WorldDCPmapInterface< Key< NDIM > > > &pmap, bool fence=true)
Create a new copy of the function with different distribution and optional fence.
Definition mra.h:2037
void gaxpy(const double a, ScalarResult< T > &left, const double b, const T &right, const bool fence=true)
the result type of a macrotask must implement gaxpy
Definition macrotaskq.h:246
static const double d
Definition nonlinschro.cc:121
Implements most functionality of separated operators.
Implements ParallelInputArchive and ParallelOutputArchive for parallel serialization of data.
double Q(double a)
Definition relops.cc:20
static const double c
Definition relops.cc:10
static const double L
Definition rk.cc:46
static const double thresh
Definition rk.cc:45
static const long k
Definition rk.cc:44
Definition test_ar.cc:204
void serialize(Archive &ar)
Definition mra.h:916
T(* f)(T)
Definition mra.h:911
void operator()(const Key< NDIM > &key, Tensor< T > &t) const
Definition mra.h:913
SimpleUnaryOpWrapper(T(*f)(T))
Definition mra.h:912
void serialize(Archive &ar)
Definition mra.h:849
bool operator()(implT *impl, const Key< NDIM > &key, const nodeT &t) const
Definition mra.h:845
Definition type_data.h:146
TensorArgs holds the arguments for creating a LowRankTensor.
Definition gentensor.h:134
Default load of an object via serialize(ar, t).
Definition archive.h:666
static void store(const ParallelOutputArchive< archiveT > &ar, const Function< T, NDIM > &f)
Definition mra.h:2773
Default store of an object via serialize(ar, t).
Definition archive.h:611
Tensor< double > operator()(const Key< NDIM > &key, const Tensor< double_complex > &t) const
Definition mra.h:2685
double resultT
Definition mra.h:2684
void serialize(Archive &ar)
Definition mra.h:2690
void serialize(Archive &ar)
Definition mra.h:2679
Tensor< double > operator()(const Key< NDIM > &key, const Tensor< double_complex > &t) const
Definition mra.h:2674
double resultT
Definition mra.h:2673
Tensor< double > operator()(const Key< NDIM > &key, const Tensor< double_complex > &t) const
Definition mra.h:2664
void serialize(Archive &ar)
Definition mra.h:2668
double resultT
Definition mra.h:2663
Tensor< double > operator()(const Key< NDIM > &key, const Tensor< double_complex > &t) const
Definition mra.h:2654
double resultT
Definition mra.h:2653
void serialize(Archive &ar)
Definition mra.h:2658
Definition funcimpl.h:610
returns true if the result of a hartree_product is a leaf node (compute norm & error)
Definition funcimpl.h:500
Definition funcimpl.h:564
Definition lowrankfunction.h:332
Defines and implements most of Tensor.
#define UNARY_OPTIMIZED_ITERATOR(X, x, exp)
Definition tensor_macros.h:658
AtomicInt sum
Definition test_atomicint.cc:46
double norm(const T i1)
Definition test_cloud.cc:72
int task(int i)
Definition test_runtime.cpp:4
void e()
Definition test_sig.cc:75
static const double alpha
Definition testcosine.cc:10
constexpr std::size_t NDIM
Definition testgconv.cc:54
std::size_t axis
Definition testpdiff.cc:59
#define TENSOR_RESULT_TYPE(L, R)
This macro simplifies access to TensorResultType.
Definition type_data.h:205
Defines operations on vectors of Functions.
Implements WorldContainer.
#define PROFILE_FUNC
Definition worldprofile.h:209
#define PROFILE_MEMBER_FUNC(classname)
Definition worldprofile.h:210