MADNESS 0.10.1
|
returns true if the result of a hartree_product is a leaf node (compute norm & error) More...
#include <funcimpl.h>
Public Types | |
typedef FunctionImpl< T, NDIM > | implT |
Public Member Functions | |
hartree_leaf_op ()=default | |
hartree_leaf_op (const implT *f, const long &k) | |
bool | do_error_leaf_op () const |
bool | operator() (const Key< NDIM > &key) const |
no pre-determination | |
bool | operator() (const Key< NDIM > &key, const GenTensor< T > &coeff) const |
no post-determination | |
bool | operator() (const Key< NDIM > &key, const Tensor< T > &fcoeff, const Tensor< T > &gcoeff) const |
post-determination: true if f is a leaf and the result is well-represented | |
template<typename Archive > | |
void | serialize (Archive &ar) |
Public Attributes | |
const FunctionImpl< T, NDIM > * | f |
long | k |
returns true if the result of a hartree_product is a leaf node (compute norm & error)
typedef FunctionImpl<T,NDIM> madness::hartree_leaf_op< T, NDIM >::implT |
|
default |
|
inline |
|
inline |
|
inline |
no pre-determination
|
inline |
no post-determination
References MADNESS_EXCEPTION.
|
inline |
post-determination: true if f is a leaf and the result is well-represented
[in] | key | the hi-dimensional key (breaks into keys for f and g) |
[in] | fcoeff | coefficients of f of its appropriate key in NS form |
[in] | gcoeff | coefficients of g of its appropriate key in NS form |
References std::abs(), madness::error(), madness::hartree_leaf_op< T, NDIM >::f, madness::hartree_leaf_op< T, NDIM >::k, madness::Key< NDIM >::level(), NDIM, norm(), madness::Tensor< T >::normf(), s0, and thresh.
|
inline |
const FunctionImpl<T,NDIM>* madness::hartree_leaf_op< T, NDIM >::f |
long madness::hartree_leaf_op< T, NDIM >::k |