MADNESS 0.10.1
nemo.h
Go to the documentation of this file.
1/*
2 This file is part of MADNESS.
3
4 Copyright (C) 2007,2010 Oak Ridge National Laboratory
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19
20 For more information please contact:
21
22 Robert J. Harrison
23 Oak Ridge National Laboratory
24 One Bethel Valley Road
25 P.O. Box 2008, MS-6367
26
27 email: harrisonrj@ornl.gov
28 tel: 865-241-3937
29 fax: 865-572-0680
30 */
31
32/*!
33 \file examples/nemo.h
34 \brief solve the HF equations using numerical exponential MOs
35
36 The source is
37 <a href=http://code.google.com/p/m-a-d-n-e-s-s/source/browse/local
38 /trunk/src/apps/examples/nemo.h>here</a>.
39
40 */
41
42#ifndef NEMO_H_
43#define NEMO_H_
44
45#include <madness/mra/mra.h>
48#include <madness/mra/lbdeux.h>
49#include<madness/chem/SCF.h>
55#include <madness/mra/vmra.h>
56#include<madness/chem/pcm.h>
57#include<madness/chem/AC.h>
62
63namespace madness {
64
65class PNO;
66class OEP;
67
68
70
71public:
72
74
75 virtual ~NemoBase() {}
76
77 virtual std::shared_ptr<Fock<double,3>> make_fock_operator() const {
78 MADNESS_EXCEPTION("implement make_fock operator for your derived NemoBase class",1);
79 return std::shared_ptr<Fock<double,3>>();
80 }
81
82 /// create an instance of the derived object based on the input parameters
83 std::shared_ptr<NuclearCorrelationFactor> get_ncf_ptr() const {
84 return ncf;
85 }
86
87 /// normalize the nemos
88 template<typename T, std::size_t NDIM>
89 void static normalize(std::vector<Function<T,NDIM> >& nemo,
91
92 if (nemo.size()==0) return;
93 World& world=nemo[0].world();
94 // compute the norm of the reconstructed orbitals, includes the factor
95 std::vector<Function<T,NDIM> > mos = (metric.is_initialized()) ? metric*nemo : nemo;
96 std::vector<double> norms = norm2s(world, mos);
97
98 // scale the nemos, excludes the nuclear correlation factor
99 std::vector<double> invnorm(norms.size());
100 for (std::size_t i = 0; i < norms.size(); ++i)
101 invnorm[i] = 1.0 / norms[i];
102 scale(world, nemo, invnorm);
103 }
104
105 template<typename T>
106 static Tensor<T> Q2(const Tensor<T>& s) {
107 Tensor<T> Q = -0.5*s;
108 for (int i=0; i<s.dim(0); ++i) Q(i,i) += 1.5;
109 return Q;
110 }
111
112 /// orthonormalize the vectors
113 template<typename T, std::size_t NDIM>
114 void orthonormalize(std::vector<Function<T,NDIM> >& nemo,
116 const double trantol=FunctionDefaults<NDIM>::get_thresh()*0.01) const {
117
118 if (nemo.size()==0) return;
119 normalize(nemo,metric);
120 double maxq;
121 do {
122 std::vector<Function<T,NDIM> > Rnemo = (metric.is_initialized()) ? metric*nemo : nemo;
123 Tensor<T> Q = Q2(matrix_inner(world, Rnemo, Rnemo));
124 maxq=0.0;
125 for (int i=0; i<Q.dim(0); ++i)
126 for (int j=0; j<i; ++j)
127 maxq = std::max(maxq,std::abs(Q(i,j)));
128
129 Q.screen(trantol); // ???? Is this really needed?
130 nemo = transform(world, nemo, Q, trantol, true);
131 truncate(world, nemo);
132// if (world.rank() == 0) print("ORTHOG2: maxq trantol", maxq, trantol);
133
134 } while (maxq>0.01);
135 normalize(nemo,metric);
136 }
137
138 template<typename T, std::size_t NDIM>
140 return sum(world,abssq(world,nemo)).truncate();
141 }
142
143 virtual bool need_recompute_factors_and_potentials(const double thresh) const {
144 bool need=false;
145 if ((not R.is_initialized()) or (R.thresh()>thresh)) need=true;
146 if (not ncf) need=true;
147 if ((not R_square.is_initialized()) or (R_square.thresh()>thresh)) need=true;
148 return need;
149 };
150
152 R.clear();
153 R_square.clear();
154 ncf.reset();
155 };
156
158 const std::shared_ptr<PotentialManager> pm,
159 const std::pair<std::string,double> ncf_parameter) {
160
161 // construct the nuclear correlation factor:
162 if (not ncf) {
164 }
165
166 // re-project the ncf
168 R = ncf->function();
170 R_square = ncf->square();
172 }
173
174 /// compute the nuclear gradients
176 const Molecule& molecule) const;
177
178 /// compute kinetic energy as square of the "analytical" expectation value
179
180 /// @param[in] the nemo orbitals F
181 /// @return T = 1/2 \sum_i \int R^2 U1.U1 F^2 + 2 R^2 U1.grad(F) + R^2 grad(F)^2
182 template<typename T, std::size_t NDIM>
183 double compute_kinetic_energy(const std::vector<Function<T,NDIM> >& nemo) const {
184
185 // T = 0.5\sum_i \int R^2 U1.U1 F^2 - 2 R^2 U1.grad(F) F + R^2 grad(F)^2
186 // = 0.5 (<U1.U1 | rho > + <R^2|grad(F)^2> - 2<R^2 | U1.grad(F) >)
187 // note: U1=-grad(R)/R
188 //auto id=nemo.front().world().id();
189 //auto id1=R_square.world().id();
190 //auto worldid=world.id();
191 world.gop.fence();
192 real_function_3d dens=dot(world,nemo,nemo)*R_square;
195 double ke1=inner(dens,U1dotU1);
196
197 double ke2=0.0;
198 double ke3=0.0;
199 //double ke3_real=0.0;
200 //double ke3_imag=0.0;
201
202 for (size_t axis = 0; axis < NDIM; axis++) {
203 real_derivative_3d D = free_space_derivative<double, NDIM>(world, axis);
204 const std::vector<Function<T,NDIM> > dnemo = apply(world, D, nemo);
205
206 real_function_3d term2=dot(world,dnemo,nemo)*ncf->U1(axis);
207 double tmp=-2.0*inner(R_square,term2);
208// ke3_real -=2.0*std::real(tmp);
209// ke3_imag -=2.0*std::imag(tmp);
210 ke3 +=tmp;
211
212 const real_function_3d term1=dot(world,dnemo,dnemo);
213 world.gop.fence();
214 ke2 += inner(term1,R_square);
215
216 }
217// if (ke3_imag>1.e-8) {
218// print("kinetic energy, imaginary part: ",ke3_imag);
219// MADNESS_EXCEPTION("imaginary kinetic energy",1);
220// }
221// double ke=2.0*(ke1+ke2+ke3_real); // closed shell
222 double ke=2.0*(ke1+ke2+ke3); // closed shell
223 return 0.5*ke;
224 }
225
226 /// compute kinetic energy as square of the "analytical" derivative of the orbitals
227
228 /// @param[in] the nemo orbitals F
229 /// @return T = 1/2 \sum_i || grad(R)*F_i + R*grad(F_i)||^2
230 template<typename T, std::size_t NDIM>
231 double compute_kinetic_energy1(const std::vector<Function<T,NDIM> >& nemo) const {
232 timer timer1(world);
233 double ke=0.0;
234 for (int i=0; i<nemo.size(); ++i) {
235 double fnorm2=norm2(world,-1.0*R*ncf->U1vec()*nemo[i] + R*grad(nemo[i]));
236 ke+=2.0*fnorm2*fnorm2;
237 }
238 timer1.end("compute_kinetic_energy1");
239 return 0.5*ke;
240 }
241
242
243 /// compute kinetic energy as square of the "analytical" derivative of the orbitals
244
245 /// @param[in] the nemo orbitals F
246 /// @return T = 1/2 \sum_i || grad(R)*F_i + R*grad(F_i)||^2
247 template<typename T, std::size_t NDIM>
248 double compute_kinetic_energy1a(const std::vector<Function<T,NDIM> >& nemo) const {
249 timer timer1(world);
250 double ke=0.0;
251 for (int i=0; i<NDIM; ++i) {
252 std::vector< std::shared_ptr< Derivative<T,NDIM> > > grad=
253 gradient_operator<T,NDIM>(world);
254 double fnorm2=norm2(world,R*(-1.0*ncf->U1(i)*nemo + apply(world,*(grad[i]),nemo)));
255 ke+=2.0*fnorm2*fnorm2;
256 }
257 timer1.end("compute_kinetic_energy1a");
258 return 0.5*ke;
259 }
260
261 /// compute kinetic energy as direct derivative of the orbitals (probably imprecise)
262
263 /// @param[in] the nemo orbitals F
264 /// @return T = 1/2 \sum_i || grad(R*F_i)||^2
265 template<typename T, std::size_t NDIM>
266 double compute_kinetic_energy2(const std::vector<Function<T,NDIM> >& nemo) const {
267
268 // it's ok to use phi here, no regularization necessary for this eigenvalue
269 double E_kin = 0.0;
270 for (int axis = 0; axis < 3; axis++) {
271 real_derivative_3d D = free_space_derivative<double, 3>(world, axis);
272 const vecfuncT dphi = apply(world, D,R*nemo);
273 E_kin += 0.5 * (inner(world, dphi, dphi)).sum();
274 // -1/2 sum <Psi|Nabla^2|Psi> = 1/2 sum <NablaPsi|NablaPsi> (integration by parts)
275 }
276 E_kin *= 2.0; // 2 because closed shell
277 return E_kin;
278 }
279
280
281 bool check_convergence(const std::vector<double> energies,
282 const std::vector<double> oldenergies, const double bsh_norm,
283 const double delta_density, const CalculationParameters& param,
284 const double econv, const double dconv) const {
285
286 double maxenergychange=fabs(energies.size()-oldenergies.size()); // >0 if oldenergyvec not initialized
287 for (auto iter1=energies.begin(), iter2=oldenergies.begin();
288 (iter1!=energies.end() and iter2!=oldenergies.end()); iter1++, iter2++) {
289 maxenergychange=std::max(maxenergychange,fabs(*iter1 - *iter2));
290 }
291 double delta_energy=fabs(energies[0]-oldenergies[0]);
292
293 bool bsh_conv=param.converge_bsh_residual() ? bsh_norm<dconv : true;
294 bool total_energy_conv=param.converge_total_energy() ? delta_energy<econv : true;
295 bool each_energy_conv=param.converge_each_energy() ? maxenergychange<econv*3.0 : true;
296 bool density_conv=param.converge_density() ? delta_density<dconv : true;
297
298 if (world.rank()==0 and param.print_level()>2) {
299 std::stringstream line;
300 line << "convergence: bshresidual, energy change, max energy change, density change "
301 << std::scientific << std::setprecision(1)
302 << bsh_norm << " " << delta_energy << " "
303 << maxenergychange << " " << delta_density;
304 print(line.str());
305 }
306
307 return (bsh_conv and density_conv and each_energy_conv and total_energy_conv);
308 }
309
311
312 /// the nuclear correlation factor
313 std::shared_ptr<NuclearCorrelationFactor> ncf;
314
315 /// the nuclear correlation factor
317
318 /// the square of the nuclear correlation factor
320
321
322};
323
324
325/// The Nemo class
326class Nemo: public NemoBase, public QCPropertyInterface {
327 typedef std::shared_ptr<real_convolution_3d> poperatorT;
328 friend class PNO;
329 friend class TDHF;
330
331public:
332 /// class holding parameters for a nemo calculation beyond the standard dft parameters from moldft
334
338
342
346
348 // check if parameters are initialized for a nemo calculation already
349 if (parameter_exists("ncf")) return;
350 initialize<std::pair<std::string,double> > ("ncf",{"slater",2.0},"nuclear correlation factor");
351 initialize<bool> ("hessian",false,"compute the hessian matrix");
352 initialize<bool> ("read_cphf",false,"read the converged orbital response for nuclear displacements from file");
353 initialize<bool> ("restart_cphf",false,"read the guess orbital response for nuclear displacements from file");
354 initialize<bool> ("purify_hessian",false,"symmetrize the hessian matrix based on atomic charges");
355 set_derived_value("k",7);
356 }
357
358 std::pair<std::string,double> ncf() const {return get<std::pair<std::string,double> >("ncf");}
359 bool hessian() const {return get<bool>("hessian");}
360
361 };
362
363
364public:
365
366 /// ctor
367
368 /// @param[in] world1 the world
369 /// @param[in] calc the SCF
370// Nemo(World& world1, std::shared_ptr<SCF> calc, const std::string inputfile);
371
372 Nemo(World& world, const commandlineparser& parser);
373
375
376 std::string name() const {return "nemo";}
377 bool selftest() {return false;}
378
379 static void help() {
380 print_header2("help page for NEMO");
381 print("The nemo code computes Hartree-Fock and DFT energies, gradients and hessians using a nuclear correlation factor");
382 print("that regularizes the singular nuclear potential. SCF orbitals for the basis for post-SCF calculations like");
383 print("excitation energies (cis), correlation energies (cc2), local potentials (oep), etc\n");
384 print("A nemo calculation input is mostly identical to a moldft calculation input, but it uses the additional input");
385 print("parameter ncf (nuclear correlation factor)\n");
386 print("You can print all available calculation parameters by running\n");
387 print("nemo --print_parameters\n");
388 print("You can perform a simple calculation by running\n");
389 print("nemo --geometry=h2o.xyz\n");
390 print("provided you have an xyz file in your directory.");
391
392 }
393
394 static void print_parameters() {
396 print("default parameters for the nemo program are");
397 param.print("dft","end");
398 print("\n\nthe molecular geometry must be specified in a separate block:");
400 }
401
402
403 bool check_converged(const Tensor<double>& x) const {
404 double xsq = x.sumsq();
405 return (xsq == coords_sum);
406 }
407
408 virtual double value() {return value(calc->molecule.get_all_coords());}
409
410 virtual double value(const Tensor<double>& x);
411
412 void load_mos(World& w) {
413 calc->load_mos(w);
414 }
415
416 /// compute the nuclear gradients
418
419 bool provides_gradient() const {return true;}
420
421 /// returns the molecular hessian matrix at structure x
423
424 /// construct the fock operator based on the calculation parameters (K or XC?)
425 virtual std::shared_ptr<Fock<double,3>> make_fock_operator() const;
426
427 /// purify and symmetrize the hessian
428
429 /// The hessian should be symmetric, but it is not, because
430 /// \f[
431 /// \langle i^{Y_B}|H^{X_A}|i\rangle \neq \langle i|H^{X_A}|i^{Y_B}\rangle
432 /// \f]
433 /// does holds analytically, but not numerically. If the two numbers
434 /// differ, pick the more trustworthy, which is the one with a heavy
435 /// atom causing the perturbed density and the light atom being the
436 /// nuclear singularity.
437 /// @param[in] hessian the raw hessian
438 /// @return a symmetrized hessian
440
441
442 /// solve the CPHF equations for the nuclear displacements
443
444 /// this function computes that part of the orbital response that is
445 /// orthogonal to the occupied space. If no NCF's are used this
446 /// corresponds to the normal response. If NCF's are used the part
447 /// parallel to the occupied space must be added!
448 /// \f[
449 /// F^X = F^\perp + F^\parallel
450 /// \f]
451 /// cf parallel_CPHF()
452 /// @param[in] iatom the atom A to be moved
453 /// @param[in] iaxis the coordinate X of iatom to be moved
454 /// @return \ket{i^X} or \ket{F^\perp}
455 vecfuncT solve_cphf(const size_t iatom, const int iaxis, const Tensor<double> fock,
456 const vecfuncT& guess, const vecfuncT& rhsconst,
457 const Tensor<double> incomplete_hessian, const vecfuncT& parallel,
458 const SCFProtocol& p, const std::string& xc_data) const;
459
460 /// solve the CPHF equation for all displacements
461
462 /// this function computes the nemo response F^X
463 /// \f[
464 /// F^X = F^\perp + F^\parallel
465 /// \f]
466 /// To reconstruct the unregularized orbital response (not recommended):
467 /// \f[
468 /// i^X = R^X F + R F^X
469 /// \f]
470 /// The orbital response i^X constructed in this way is automatically
471 /// orthogonal to the occupied space because of the parallel term F^\parallel
472 /// @return a vector of the nemo response F^X for all displacements
473 std::vector<vecfuncT> compute_all_cphf();
474
475 /// this function computes that part of the orbital response that is
476 /// parallel to the occupied space.
477 /// \f[
478 /// F^X = F^\perp + F^\parallel
479 /// \f]
480 /// If no NCF's are used F^\parallel vanishes.
481 /// If NCF's are used this term does not vanish because the derivatives of
482 /// the NCF does not vanish, and it is given by
483 /// \f[
484 /// F_i^\parallel = -\frac{1}{2}\sum_k|F_k ><F_k | (R^2)^X | F_i>
485 /// \f]
486 vecfuncT compute_cphf_parallel_term(const size_t iatom, const int iaxis) const;
487
488 /// compute the IR intensities in the double harmonic approximation
489
490 /// use the projected normal modes; units are km/mol
491 /// @param[in] normalmodes the normal modes
492 /// @param[in] dens_pt the perturbed densities for each nuclear displacement
494 const vecfuncT& dens_pt) const;
495
496 std::shared_ptr<SCF> get_calc() const {return calc;}
497
499
500 PCM get_pcm()const{return pcm;}
501
502 /// compute the Fock matrix from scratch
503 tensorT compute_fock_matrix(const vecfuncT& nemo, const tensorT& occ) const;
504
505 /// return a reference to the molecule
506 Molecule& molecule() {return calc->molecule;}
507
508 /// return a reference to the molecule
510 return calc->molecule;
511 }
512
513 /// make the density (alpha or beta)
515 const vecfuncT& nemo) const;
516
517 /// make the density using different bra and ket vectors
518
519 /// e.g. for computing the perturbed density \sum_i \phi_i \phi_i^X
520 /// or when using nemos: \sum_i R2nemo_i nemo_i
522 const vecfuncT& bra, const vecfuncT& ket, const bool refine=false) const;
523
524 /// make the derivative of the density
525
526 /// \f$ \nabla\rho = 2R^X R \rho_R + R^2\nabla \rho_R \f$
527 /// @param[in] rhonemo the regularized density
528 /// @param[in] axis the component of the nabla operator
529 /// @return the gradient of the *reconstructed* density
531 const int axis) const;
532
533 /// compute the reduced densities sigma (gamma) for GGA functionals
535 const real_function_3d& rho2) const;
536
537
538 /// the Laplacian of the density
539
540 /// The Laplacian should currently only be used for subsequent convolution
541 /// with a Green's function (which is reasonably stable), but not on its own!
542 ///
543 /// The Laplacian of the cuspy density is numerically fairly unstable:
544 /// - a singular term may be rewritten using the nuclear potential (see below)
545 /// - the Laplacian of the regularized density is still very noisy
546 ///
547 /// It may be computed as
548 /// \f[
549 /// \Delta \rho = \Delta (R^2 \rho_R)
550 /// = \Delta (R^2) \rho_R + 2\nabla R \nabla \rho_R + R^2 \Delta \rho_R
551 /// = 2 R^2 U1^2 \rho_R -4 R^2 ( U-V ) \rho_R + R^2 \Delta\rho_R
552 /// \f]
553 /// where we can use the identity
554 /// \f[
555 /// U=V + R^{-1}[T,R]
556 /// -2 R (U-V) = \Delta R + 2\nabla R\dot \nabla
557 /// \f]
558 /// first term comes from the definition of the U potential as the commutator
559 /// over the kinetic energy (aka the Laplacian)
560 /// @param[in] rhonemo the regularized density \rho_R
561 /// @return the laplacian of the reconstructed density \Delta (R^2\rho_R)
563
564 /// compute the kinetic energy potential using Eq. (16) of
565 /// R. A. King and N. C. Handy, “Kinetic energy functionals from the Kohn–Sham potential,”
566 /// Phys. Chem. Chem. Phys., vol. 2, no. 22, pp. 5049–5056, 2000.
568
569
570 /// smooth a function by projecting it onto k-1 and then average with k
571
572 /// kept it here for further testing
574 int k=f.get_impl()->get_k();
575 real_function_3d fproj=project(f,k-1);
576 real_function_3d freproj=project(fproj,k);
577 f=0.5*(f+freproj);
578 }
579
580protected:
581
582 std::shared_ptr<SCF> calc;
583
584public:
586
587protected:
589
590public:
591
592 /// return the symmetry_projector
596
597private:
598
599 /// sum of square of coords at last solved geometry
600 mutable double coords_sum;
601
602protected:
603 /// a poisson solver
604 std::shared_ptr<real_convolution_3d> poisson;
605
606 /// asymptotic correction for DFT
608
609// /// apply the AC scheme of Tozer/Handy with the multipole approximation
610// Function<double,3> apply_ac(const Function<double,3>& vxc)const{
611// return ac.apply(vxc);
612// }
613//
614// /// apply the AC scheme of Tozer/Handy using the hartree potential
615// Function<double,3> apply_ac(const Function<double,3>& vxc, const Function<double,3>& vhartree)const{
616// return ac.apply(vxc,vhartree);
617// }
618//
619// /// apply the AC scheme of Tozer/Handy
620// Function<double,3> apply_ac_excited(Function<double,3>& vxc, const Function<double,3>& vhartree)const{
621// return ac.apply_potential(vxc,vhartree);
622// }
623
624private:
625 /// polarizable continuum model
627// AC<3> ac;
628
629protected:
630 /// adapt the thresholds consistently to a common value
631 void set_protocol(const double thresh) {
632
633 calc->set_protocol<3>(world,thresh);
634
636 timer timer1(world,param.print_level()>2);
637 get_calc()->make_nuclear_potential(world);
638 construct_nuclear_correlation_factor(calc->molecule, calc->potentialmanager, param.ncf());
639 timer1.end("reproject ncf");
640 }
641
642 // (re) construct the Poisson solver
643 poisson = std::shared_ptr<real_convolution_3d>(
645
646 // set thresholds for the MOs
649
650 }
651
652 /// solve the HF equations
653 double solve(const SCFProtocol& proto);
654
655 /// given nemos, compute the HF energy using the regularized expressions for T and V
656 std::vector<double> compute_energy_regularized(const vecfuncT& nemo, const vecfuncT& Jnemo,
657 const vecfuncT& Knemo, const vecfuncT& Unemo) const;
658
659 /// compute the reconstructed orbitals, and all potentials applied on nemo
660
661 /// to use these potentials in the fock matrix computation they must
662 /// be multiplied by the nuclear correlation factor
663 /// @param[in] nemo the nemo orbitals
664 /// @param[out] Jnemo Coulomb operator applied on the nemos
665 /// @param[out] Knemo exchange operator applied on the nemos
666 /// @param[out] pcmnemo PCM (solvent) potential applied on the nemos
667 /// @param[out] Unemo regularized nuclear potential applied on the nemos
668 void compute_nemo_potentials(const vecfuncT& nemo,
669 vecfuncT& Jnemo, vecfuncT& Knemo, vecfuncT& xcnemo, vecfuncT& pcmnemo,
670 vecfuncT& Unemo) const;
671
672 /// return the Coulomb potential
674
675 /// compute the incomplete hessian
676
677 /// incomplete hessian is the nuclear-nuclear contribution, and the
678 /// contribution from the second derivative of the nuclear potential,
679 /// and also the derivative of the nuclear correlation factor.
680 /// i.e. all contributions that *do not* contain the regularized perturbed
681 /// density, but it will contain parts of the perturbed density
683
684 /// compute the complementary incomplete hessian
685
686 /// @param[in] xi the response functions including the parallel part
688 const std::vector<vecfuncT>& xi) const;
689
690 /// compute the constant term for the CPHF equations
691
692 /// mainly all terms with the nuclear correlation factor's derivatives
693 vecfuncT make_cphf_constant_term(const size_t iatom, const int iaxis,
694 const vecfuncT& R2nemo, const real_function_3d& rhonemo) const;
695
696public:
697
698 bool is_dft() const {return calc->xc.is_dft();}
699
700 bool do_pcm() const {return param.pcm_data() != "none";}
701
702 bool do_ac() const {return param.ac_data() != "none";}
703
704 AC<3> get_ac() const {return ac;}
705
706 bool do_symmetry() const {return (symmetry_projector.get_pointgroup()!="C1");}
707
708protected:
709
710 /// localize the nemo orbitals
711 vecfuncT localize(const vecfuncT& nemo, const double dconv, const bool randomize) const;
712protected:
713 /// return the threshold for vanishing elements in orbital rotations
714 double trantol() const {
715 return calc->vtol / std::min(30.0, double(get_calc()->amo.size()));
716 }
717
718 void make_plots(const real_function_3d &f,const std::string &name="function")const{
719 double width = FunctionDefaults<3>::get_cell_min_width()/2.0 - 1.e-3;
721 coord_3d start(0.0); start[0]=-width;
722 coord_3d end(0.0); end[0]=width;
723 plot_line(("line_"+name).c_str(),1000,start,end,f);
724 }
725
726 /// save a function
727 template<typename T, size_t NDIM>
728 void save_function(const std::vector<Function<T,NDIM> >& f, const std::string name) const;
729
730 /// load a function
731 template<typename T, size_t NDIM>
732 void load_function(std::vector<Function<T,NDIM> >& f, const std::string name) const;
733
734};
735
736/// save a function
737template<typename T, size_t NDIM>
738void Nemo::save_function(const std::vector<Function<T,NDIM> >& f, const std::string name) const {
739 if (world.rank()==0) print("saving vector of functions",name);
741 ar & f.size();
742 for (const Function<T,NDIM>& ff:f) ar & ff;
743}
744
745/// load a function
746template<typename T, size_t NDIM>
747void Nemo::load_function(std::vector<Function<T,NDIM> >& f, const std::string name) const {
748 if (world.rank()==0) print("loading vector of functions",name);
750 std::size_t fsize=0;
751 ar & fsize;
752 f.resize(fsize);
753 for (std::size_t i=0; i<fsize; ++i) ar & f[i];
754}
755
756}
757
758#endif /* NEMO_H_ */
759
double w(double t, double eps)
Definition DKops.h:22
solution protocol for SCF calculations
Definition AC.h:427
Implements derivatives operators with variety of boundary conditions on simulation domain.
Definition derivative.h:266
FunctionDefaults holds default paramaters as static class members.
Definition funcdefaults.h:100
static double get_cell_min_width()
Returns the minimum width of any user cell dimension.
Definition funcdefaults.h:379
A multiresolution adaptive numerical function.
Definition mra.h:139
double thresh() const
Returns value of truncation threshold. No communication.
Definition mra.h:607
void set_thresh(double value, bool fence=true)
Sets the value of the truncation threshold. Optional global fence.
Definition mra.h:617
void clear(bool fence=true)
Clears the function as if constructed uninitialized. Optional fence.
Definition mra.h:889
bool is_initialized() const
Returns true if the function is initialized.
Definition mra.h:167
Definition molecule.h:129
static void print_parameters()
Definition molecule.cc:115
Definition nemo.h:69
std::shared_ptr< NuclearCorrelationFactor > ncf
the nuclear correlation factor
Definition nemo.h:313
double compute_kinetic_energy1a(const std::vector< Function< T, NDIM > > &nemo) const
compute kinetic energy as square of the "analytical" derivative of the orbitals
Definition nemo.h:248
double compute_kinetic_energy1(const std::vector< Function< T, NDIM > > &nemo) const
compute kinetic energy as square of the "analytical" derivative of the orbitals
Definition nemo.h:231
std::shared_ptr< NuclearCorrelationFactor > get_ncf_ptr() const
create an instance of the derived object based on the input parameters
Definition nemo.h:83
virtual void invalidate_factors_and_potentials()
Definition nemo.h:151
static void normalize(std::vector< Function< T, NDIM > > &nemo, const Function< double, NDIM > metric=Function< double, NDIM >())
normalize the nemos
Definition nemo.h:89
NemoBase(World &w)
Definition nemo.h:73
real_function_3d R
the nuclear correlation factor
Definition nemo.h:316
Function< typename Tensor< T >::scalar_type, NDIM > compute_density(const std::vector< Function< T, NDIM > > nemo) const
Definition nemo.h:139
virtual std::shared_ptr< Fock< double, 3 > > make_fock_operator() const
Definition nemo.h:77
void construct_nuclear_correlation_factor(const Molecule &molecule, const std::shared_ptr< PotentialManager > pm, const std::pair< std::string, double > ncf_parameter)
Definition nemo.h:157
virtual bool need_recompute_factors_and_potentials(const double thresh) const
Definition nemo.h:143
real_function_3d R_square
the square of the nuclear correlation factor
Definition nemo.h:319
Tensor< double > compute_gradient(const real_function_3d &rhonemo, const Molecule &molecule) const
compute the nuclear gradients
Definition madness/chem/nemo.cc:95
double compute_kinetic_energy(const std::vector< Function< T, NDIM > > &nemo) const
compute kinetic energy as square of the "analytical" expectation value
Definition nemo.h:183
static Tensor< T > Q2(const Tensor< T > &s)
Definition nemo.h:106
double compute_kinetic_energy2(const std::vector< Function< T, NDIM > > &nemo) const
compute kinetic energy as direct derivative of the orbitals (probably imprecise)
Definition nemo.h:266
World & world
Definition nemo.h:310
void orthonormalize(std::vector< Function< T, NDIM > > &nemo, const Function< double, NDIM > metric=Function< double, NDIM >(), const double trantol=FunctionDefaults< NDIM >::get_thresh() *0.01) const
orthonormalize the vectors
Definition nemo.h:114
virtual ~NemoBase()
Definition nemo.h:75
bool check_convergence(const std::vector< double > energies, const std::vector< double > oldenergies, const double bsh_norm, const double delta_density, const CalculationParameters &param, const double econv, const double dconv) const
Definition nemo.h:281
The Nemo class.
Definition nemo.h:326
void set_protocol(const double thresh)
adapt the thresholds consistently to a common value
Definition nemo.h:631
bool do_symmetry() const
Definition nemo.h:706
virtual double value()
Definition nemo.h:408
projector_irrep get_symmetry_projector() const
return the symmetry_projector
Definition nemo.h:593
tensorT compute_fock_matrix(const vecfuncT &nemo, const tensorT &occ) const
compute the Fock matrix from scratch
Definition madness/chem/nemo.cc:306
double trantol() const
return the threshold for vanishing elements in orbital rotations
Definition nemo.h:714
Molecule & molecule() const
return a reference to the molecule
Definition nemo.h:509
vecfuncT compute_cphf_parallel_term(const size_t iatom, const int iaxis) const
Definition madness/chem/nemo.cc:1477
void load_function(std::vector< Function< T, NDIM > > &f, const std::string name) const
load a function
Definition nemo.h:747
std::shared_ptr< SCF > get_calc() const
Definition nemo.h:496
Tensor< double > purify_hessian(const Tensor< double > &hessian) const
purify and symmetrize the hessian
Definition madness/chem/nemo.cc:981
std::shared_ptr< real_convolution_3d > poperatorT
Definition nemo.h:327
real_function_3d get_coulomb_potential(const vecfuncT &psi) const
return the Coulomb potential
Definition madness/chem/nemo.cc:604
std::vector< double > compute_energy_regularized(const vecfuncT &nemo, const vecfuncT &Jnemo, const vecfuncT &Knemo, const vecfuncT &Unemo) const
given nemos, compute the HF energy using the regularized expressions for T and V
Definition madness/chem/nemo.cc:457
Tensor< double > gradient(const Tensor< double > &x)
compute the nuclear gradients
Definition madness/chem/nemo.cc:795
Tensor< double > hessian(const Tensor< double > &x)
returns the molecular hessian matrix at structure x
Definition madness/chem/nemo.cc:824
double solve(const SCFProtocol &proto)
solve the HF equations
Definition madness/chem/nemo.cc:329
Tensor< double > make_incomplete_hessian() const
compute the incomplete hessian
Definition madness/chem/nemo.cc:1023
std::vector< vecfuncT > compute_all_cphf()
solve the CPHF equation for all displacements
Definition madness/chem/nemo.cc:1310
Tensor< double > make_incomplete_hessian_response_part(const std::vector< vecfuncT > &xi) const
compute the complementary incomplete hessian
Definition madness/chem/nemo.cc:1077
real_function_3d make_density(const Tensor< double > &occ, const vecfuncT &nemo) const
make the density (alpha or beta)
Definition madness/chem/nemo.cc:610
NemoCalculationParameters param
Definition nemo.h:585
real_function_3d make_laplacian_density(const real_function_3d &rhonemo) const
the Laplacian of the density
Definition madness/chem/nemo.cc:652
const NemoCalculationParameters & get_param() const
Definition nemo.h:498
static void smoothen(real_function_3d &f)
smooth a function by projecting it onto k-1 and then average with k
Definition nemo.h:573
PCM get_pcm() const
Definition nemo.h:500
Tensor< double > compute_IR_intensities(const Tensor< double > &normalmodes, const vecfuncT &dens_pt) const
compute the IR intensities in the double harmonic approximation
Definition madness/chem/nemo.cc:1495
virtual std::shared_ptr< Fock< double, 3 > > make_fock_operator() const
construct the fock operator based on the calculation parameters (K or XC?)
Definition madness/chem/nemo.cc:262
std::shared_ptr< SCF > calc
Definition nemo.h:582
void load_mos(World &w)
Definition nemo.h:412
static void print_parameters()
Definition nemo.h:394
bool check_converged(const Tensor< double > &x) const
Definition nemo.h:403
bool provides_gradient() const
Override this to return true if the derivative is implemented.
Definition nemo.h:419
real_function_3d kinetic_energy_potential(const vecfuncT &nemo) const
Definition madness/chem/nemo.cc:695
void compute_nemo_potentials(const vecfuncT &nemo, vecfuncT &Jnemo, vecfuncT &Knemo, vecfuncT &xcnemo, vecfuncT &pcmnemo, vecfuncT &Unemo) const
compute the reconstructed orbitals, and all potentials applied on nemo
Definition madness/chem/nemo.cc:530
PCM pcm
polarizable continuum model
Definition nemo.h:626
void save_function(const std::vector< Function< T, NDIM > > &f, const std::string name) const
save a function
Definition nemo.h:738
void make_plots(const real_function_3d &f, const std::string &name="function") const
Definition nemo.h:718
bool do_ac() const
Definition nemo.h:702
projector_irrep symmetry_projector
Definition nemo.h:588
vecfuncT solve_cphf(const size_t iatom, const int iaxis, const Tensor< double > fock, const vecfuncT &guess, const vecfuncT &rhsconst, const Tensor< double > incomplete_hessian, const vecfuncT &parallel, const SCFProtocol &p, const std::string &xc_data) const
solve the CPHF equations for the nuclear displacements
Definition madness/chem/nemo.cc:1156
double coords_sum
sum of square of coords at last solved geometry
Definition nemo.h:600
std::shared_ptr< real_convolution_3d > poisson
a poisson solver
Definition nemo.h:604
real_function_3d make_sigma(const real_function_3d &rho1, const real_function_3d &rho2) const
compute the reduced densities sigma (gamma) for GGA functionals
Definition madness/chem/nemo.cc:766
real_function_3d make_ddensity(const real_function_3d &rhonemo, const int axis) const
make the derivative of the density
Definition madness/chem/nemo.cc:636
AC< 3 > ac
asymptotic correction for DFT
Definition nemo.h:607
vecfuncT localize(const vecfuncT &nemo, const double dconv, const bool randomize) const
localize the nemo orbitals
Definition madness/chem/nemo.cc:248
bool do_pcm() const
Definition nemo.h:700
bool selftest()
Definition nemo.h:377
AC< 3 > get_ac() const
Definition nemo.h:704
vecfuncT make_cphf_constant_term(const size_t iatom, const int iaxis, const vecfuncT &R2nemo, const real_function_3d &rhonemo) const
compute the constant term for the CPHF equations
Definition madness/chem/nemo.cc:1105
Molecule & molecule()
return a reference to the molecule
Definition nemo.h:506
std::string name() const
Definition nemo.h:376
static void help()
Definition nemo.h:379
bool is_dft() const
Definition nemo.h:698
functor for a local U1 dot U1 potential
Definition correlationfactor.h:532
interface class to the PCMSolver library
Definition pcm.h:52
Definition PNO.h:27
bool parameter_exists(const std::string &key) const
Definition QCCalculationParametersBase.h:552
void print(const std::string header="", const std::string footer="") const
print all parameters
Definition QCCalculationParametersBase.cc:22
void set_derived_value(const std::string &key, const T &value)
Definition QCCalculationParametersBase.h:406
class implementing properties of QC models
Definition QCPropertyInterface.h:11
struct for running a protocol of subsequently tightening precision
Definition SCFProtocol.h:47
Definition TDHF.h:209
A tensor is a multidimensional array.
Definition tensor.h:317
T sumsq() const
Returns the sum of the squares of the elements.
Definition tensor.h:1669
void fence(bool debug=false)
Synchronizes all processes in communicator AND globally ensures no pending AM or tasks.
Definition worldgop.cc:161
A parallel world class.
Definition world.h:132
ProcessID rank() const
Returns the process rank in this World (same as MPI_Comm_rank()).
Definition world.h:320
WorldGopInterface & gop
Global operations.
Definition world.h:207
An archive for storing local or parallel data, wrapping a BinaryFstreamInputArchive.
Definition parallel_archive.h:366
An archive for storing local or parallel data wrapping a BinaryFstreamOutputArchive.
Definition parallel_archive.h:321
Definition pointgroupsymmetry.h:98
std::string get_pointgroup() const
get the point group name
Definition pointgroupsymmetry.h:170
char * p(char *buf, const char *name, int k, int initial_level, double thresh, int order)
Definition derivatives.cc:72
Defines/implements plotting interface for functions.
double psi(const Vector< double, 3 > &r)
Definition hatom_energy.cc:78
Implements (2nd generation) static load/data balancing for functions.
#define MADNESS_EXCEPTION(msg, value)
Macro for throwing a MADNESS exception.
Definition madness_exception.h:119
optimize the geometrical structure of a molecule
Main include file for MADNESS and defines Function interface.
Namespace for all elements and tools of MADNESS.
Definition DFParameters.h:10
std::shared_ptr< NuclearCorrelationFactor > create_nuclear_correlation_factor(World &world, const Molecule &molecule, const std::shared_ptr< PotentialManager > potentialmanager, const std::string inputline)
create and return a new nuclear correlation factor
Definition correlationfactor.cc:45
void print_header2(const std::string &s)
medium section heading
Definition print.cc:54
Function< double, NDIM > abssq(const Function< double_complex, NDIM > &z, bool fence=true)
Returns a new function that is the square of the absolute value of the input.
Definition mra.h:2778
response_space scale(response_space a, double b)
static SeparatedConvolution< double, 3 > * CoulombOperatorPtr(World &world, double lo, double eps, const array_of_bools< 3 > &lattice_sum=FunctionDefaults< 3 >::get_bc().is_periodic(), int k=FunctionDefaults< 3 >::get_k())
Factory function generating separated kernel for convolution with 1/r in 3D.
Definition operator.h:1818
std::vector< double > norm2s(World &world, const std::vector< Function< T, NDIM > > &v)
Computes the 2-norms of a vector of functions.
Definition vmra.h:845
void truncate(World &world, response_space &v, double tol, bool fence)
Definition basic_operators.cc:31
std::vector< Function< TENSOR_RESULT_TYPE(T, R), NDIM > > transform(World &world, const std::vector< Function< T, NDIM > > &v, const Tensor< R > &c, bool fence=true)
Transforms a vector of functions according to new[i] = sum[j] old[j]*c[j,i].
Definition vmra.h:707
void set_thresh(World &world, std::vector< Function< T, NDIM > > &v, double thresh, bool fence=true)
Sets the threshold in a vector of functions.
Definition vmra.h:1285
double norm2(World &world, const std::vector< Function< T, NDIM > > &v)
Computes the 2-norm of a vector of functions.
Definition vmra.h:871
void plot_plane(World &world, const Function< double, NDIM > &function, const std::string name)
Definition funcplot.h:621
FunctionFactory< double, 3 > real_factory_3d
Definition functypedefs.h:108
void print(const T &t, const Ts &... ts)
Print items to std::cout (items separated by spaces) and terminate with a new line.
Definition print.h:225
response_space apply(World &world, std::vector< std::vector< std::shared_ptr< real_convolution_3d > > > &op, response_space &f)
Definition basic_operators.cc:43
void refine(World &world, const std::vector< Function< T, NDIM > > &vf, bool fence=true)
refine the functions according to the autorefine criteria
Definition vmra.h:196
NDIM & f
Definition mra.h:2481
Function< TENSOR_RESULT_TYPE(T, R), NDIM > dot(World &world, const std::vector< Function< T, NDIM > > &a, const std::vector< Function< R, NDIM > > &b, bool fence=true)
Multiplies and sums two vectors of functions r = \sum_i a[i] * b[i].
Definition vmra.h:1565
double inner(response_space &a, response_space &b)
Definition response_functions.h:640
vector< functionT > vecfuncT
Definition corepotential.cc:58
std::vector< Function< T, NDIM > > grad(const Function< T, NDIM > &f, bool refine=false, bool fence=true)
shorthand gradient operator
Definition vmra.h:2033
void plot_line(World &world, const char *filename, int npt, const Vector< double, NDIM > &lo, const Vector< double, NDIM > &hi, const opT &op)
Generates ASCII file tabulating f(r) at npoints along line r=lo,...,hi.
Definition funcplot.h:438
Function< T, NDIM > project(const Function< T, NDIM > &other, int k=FunctionDefaults< NDIM >::get_k(), double thresh=FunctionDefaults< NDIM >::get_thresh(), bool fence=true)
Definition mra.h:2464
std::string name(const FuncType &type, const int ex=-1)
Definition ccpairfunction.h:28
void matrix_inner(DistributedMatrix< T > &A, const std::vector< Function< T, NDIM > > &f, const std::vector< Function< T, NDIM > > &g, bool sym=false)
Definition distpm.cc:46
static long abs(long a)
Definition tensor.h:218
Implementation of Krylov-subspace nonlinear equation solver.
Implements most functionality of separated operators.
double Q(double a)
Definition relops.cc:20
static const double thresh
Definition rk.cc:45
static const long k
Definition rk.cc:44
const double xi
Exponent for delta function approx.
Definition siam_example.cc:60
Definition test_ar.cc:204
Definition CalculationParameters.h:51
std::string ac_data() const
Definition CalculationParameters.h:200
int print_level() const
Definition CalculationParameters.h:192
double lo() const
Definition CalculationParameters.h:181
std::string pcm_data() const
Definition CalculationParameters.h:199
Definition molecular_optimizer.h:46
virtual Molecule & molecule()
return the molecule of the target
Definition molecular_optimizer.h:49
class holding parameters for a nemo calculation beyond the standard dft parameters from moldft
Definition nemo.h:333
void initialize_nemo_parameters()
Definition nemo.h:347
std::pair< std::string, double > ncf() const
Definition nemo.h:358
bool hessian() const
Definition nemo.h:359
NemoCalculationParameters(World &world, const commandlineparser &parser)
Definition nemo.h:335
NemoCalculationParameters(const CalculationParameters &param)
Definition nemo.h:339
NemoCalculationParameters()
Definition nemo.h:343
very simple command line parser
Definition commandlineparser.h:15
Definition timing_utilities.h:9
double end(const std::string msg)
Definition timing_utilities.h:56
Definition dirac-hatom.cc:108
InputParameters param
Definition tdse.cc:203
static double guess(const coordT &r)
Definition tdse.confused.cc:345
AtomicInt sum
Definition test_atomicint.cc:46
constexpr std::size_t NDIM
Definition testgconv.cc:54
std::size_t axis
Definition testpdiff.cc:59
Defines operations on vectors of Functions.