MADNESS 0.10.1
Public Member Functions | Protected Types | Protected Attributes | List of all members
slymer::PrimitiveGaussian Class Reference

A primitive Gaussian function. More...

#include <gaussian.h>

Collaboration diagram for slymer::PrimitiveGaussian:
Collaboration graph
[legend]

Public Member Functions

 PrimitiveGaussian ()
 Default constructor: Make the function 1 ( $p=1$, $f(\vec{x})=0$).
 
 PrimitiveGaussian (const GaussianType &type, const std::array< double, 3 > &center, const double ec)
 Create a primitive Gaussian function centered on the specific point, with the specified decay constant and type.
 
 PrimitiveGaussian (const PolynomialCoeffs &exppoly_, const PolynomialCoeffs &prefactor_)
 Create a primitive Gaussian function with the specified exponential polynomial (quadratic) and polynomial prefactor.
 
double operator() (const std::array< double, 3 > &x) const
 Evaluate the Gaussian primitive at the specified point.
 
PrimitiveGaussian operator* (const PrimitiveGaussian &rhs) const
 Multiply two primitive Gaussians. The result is another.
 

Protected Types

using CF = std::tuple< PolynomialCoeffs, std::array< double, 3 >, std::array< double, 3 >, std::array< std::array< double, 3 >, 3 > >
 Return type for the function's canonical form.
 

Protected Attributes

PolynomialCoeffs exppoly
 Coefficients in the exponent's quadratic function.
 
PolynomialCoeffs prefactor
 Polynomial prefactor ( $p$ in the class description).
 

Detailed Description

A primitive Gaussian function.

This basis function has the form

\[
f(x,y,z) = p(x,y,z) \exp[(x-x_0)^T \Sigma (x-x_0)],
\]

where $p$ is a polynomial and $x_0$ is the `‘center’' of the Gaussian and $\Sigma$ is the variance/covariance matrix.

This class is designed to work with Gaussian basis functions in quantum chemistry codes, but is made to be a bit more general for other applications.

The wikipedia page on multivariable normal distributions may be helpful (https://en.wikipedia.org/wiki/Multivariate_normal_distribution).

Member Typedef Documentation

◆ CF

using slymer::PrimitiveGaussian::CF = std::tuple<PolynomialCoeffs, std::array<double, 3>, std::array<double, 3>, std::array<std::array<double, 3>, 3> >
protected

Return type for the function's canonical form.

The first element is the polynomial prefactor, converted to use the principal coordinates. The second element is the array of decay values (eigenvalues of the covariance matrix). The third element is the $\nu$ vector (essentially the center of the Gaussian). The fourth element are the canonical axes in the original coordinates (for debugging purposes).

Constructor & Destructor Documentation

◆ PrimitiveGaussian() [1/3]

slymer::PrimitiveGaussian::PrimitiveGaussian ( )
inline

Default constructor: Make the function 1 ( $p=1$, $f(\vec{x})=0$).

References prefactor.

◆ PrimitiveGaussian() [2/3]

slymer::PrimitiveGaussian::PrimitiveGaussian ( const GaussianType type,
const std::array< double, 3 > &  center,
const double  ec 
)

Create a primitive Gaussian function centered on the specific point, with the specified decay constant and type.

Exceptions
std::invalid_argumentif the decay constant is non-positive.
Parameters
[in]typeThe orbital type of the Gaussian.
[in]centerThe center of the Gaussian.
[in]ecThe decay constant in the exponential.

References slymer::dxx, slymer::dxxmyy, slymer::dxy, slymer::dxz, slymer::dyy, slymer::dyz, slymer::dzz, slymer::dzzmrr, exppoly, slymer::fxxx, slymer::fxxy, slymer::fxxymyyy, slymer::fxxz, slymer::fxxzmyyz, slymer::fxyy, slymer::fxyymxxx, slymer::fxyz, slymer::fxzz, slymer::fxzzmrrx, slymer::fyyy, slymer::fyyz, slymer::fyzz, slymer::fyzzmrry, slymer::fzzz, slymer::fzzzmrrz, slymer::gx2my2dz2mr2, slymer::gx4mx2y2py4, slymer::gxxxx, slymer::gxxxy, slymer::gxxxz, slymer::gxxyy, slymer::gxxyz, slymer::gxxzz, slymer::gxydx2my2, slymer::gxydz2mr2, slymer::gxyyy, slymer::gxyyz, slymer::gxyzz, slymer::gxzdx2my2, slymer::gxzdz2mr2, slymer::gxzzz, slymer::gyyyy, slymer::gyyyz, slymer::gyyzz, slymer::gyzdx2my2, slymer::gyzdz2mr2, slymer::gyzzz, slymer::gzero, slymer::gzzzz, slymer::hm1, slymer::hm2, slymer::hm3, slymer::hm4, slymer::hm5, slymer::hp1, slymer::hp2, slymer::hp3, slymer::hp4, slymer::hp5, slymer::hxxxxx, slymer::hxxxxy, slymer::hxxxxz, slymer::hxxxyy, slymer::hxxxyz, slymer::hxxxzz, slymer::hxxyyy, slymer::hxxyyz, slymer::hxxyzz, slymer::hxxzzz, slymer::hxyyyy, slymer::hxyyyz, slymer::hxyyzz, slymer::hxyzzz, slymer::hxzzzz, slymer::hyyyyy, slymer::hyyyyz, slymer::hyyyzz, slymer::hyyzzz, slymer::hyzzzz, slymer::hzero, slymer::hzzzzz, norm(), pi, pow(), prefactor, slymer::px, slymer::py, slymer::pz, and slymer::s.

◆ PrimitiveGaussian() [3/3]

slymer::PrimitiveGaussian::PrimitiveGaussian ( const PolynomialCoeffs exppoly_,
const PolynomialCoeffs prefactor_ 
)

Create a primitive Gaussian function with the specified exponential polynomial (quadratic) and polynomial prefactor.

Exceptions
std::invalid_argumentif the exponential polynomial is not quadratic (or constant or linear as subsets).
Parameters
[in]exppoly_The exponential polynomial.
[in]prefactor_The degree of the prefactor.

References exppoly, and slymer::PolynomialCoeffs::get_degree().

Member Function Documentation

◆ operator()()

double slymer::PrimitiveGaussian::operator() ( const std::array< double, 3 > &  x) const

Evaluate the Gaussian primitive at the specified point.

Parameters
[in]xThe point.
Returns
The Gaussian primitive evaluated at the point x.

References exppoly, and prefactor.

◆ operator*()

PrimitiveGaussian slymer::PrimitiveGaussian::operator* ( const PrimitiveGaussian rhs) const

Multiply two primitive Gaussians. The result is another.

Parameters
[in]rhsThe right-hand object.
Returns
The product.

References exppoly, and prefactor.

Member Data Documentation

◆ exppoly

PolynomialCoeffs slymer::PrimitiveGaussian::exppoly
protected

Coefficients in the exponent's quadratic function.

Referenced by PrimitiveGaussian(), PrimitiveGaussian(), operator()(), and operator*().

◆ prefactor

PolynomialCoeffs slymer::PrimitiveGaussian::prefactor
protected

Polynomial prefactor ( $p$ in the class description).

Referenced by PrimitiveGaussian(), PrimitiveGaussian(), operator()(), and operator*().


The documentation for this class was generated from the following files: